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The aim of this paper is to give a simplified proof of the convergence of
the Remez algorithm.

Let I =[a, b] be a bounded and closed interval, U,, an n-dimensional
linear space of real functions continuous on I, for which the Haar condition
holds, i.e. every non-zero element of U, has at most n—1 roots on I. Let,
furthermore Z be a closed subset of I, which has at least n+ 1 points. Under
these conditions, every function f(x), which is continuous on Z has a
uniquely determined best approximation in U, in the sense of C(Z) norm,
denoted by v (x).

The aim of the Remez algorithm is to construct this element as the
limit of an infinite sequence.

We quote the well-known alternation theorem of CebySev: v(x) is the
best approximation in U, for f(x)eC(Z), if and only if there exists an
ordered set P of (n+1) distinct points of Z, P ={x,, ..., x,,,,} with the
properties

(1) FE)=v )] = max | [ -v()l, =120+,

and
sg(f(xip) =V (xipn) = =g (f(x)—v(x)), i=1,...,n.
Denote by E, (f, Z) the distance of f(x) from U,:

En(f,2) = min max | f(x)—u(x)] .
ueU, x€zZ

If Z, is a subset of Z, then it is obviously

) E.(f, Z)=E.(}, 2).



108 I. KORNYEI

This is true specially for the sets of n+ 1 elements, and the alternation
theorem of Ceby3ev assures the existence of such an ordered system P of
n+ 1 elements, for which

E.(f,P)=E,(f, 2)
holds.

If P is an ordered set of n+ 1 distinct elements, then it is easy to find
E. (f, P) and the best approximation on P.

Let x, ..., x,,, be the (distinct) points of P, then there exist numbers
d;, with the following properties

n+1
A3) > dju(x)=0, forevery ueU,;
j=1
4) Sgdj = _Sgdj—l )
%) dj#=0, j=12,...,n+1;
n+1
(©) 2 4l =1,
j=1
Let u, (x), ..., u,(x) be a basis of U,. Consider the determinant of the

matrix, which is obtained from the matrix

[u1 (x) ...uy(xy) ]

Uy (Xpiq) - - Up (Xppq)

by omitting the j-th row. We multiply this determinant by (—1)/~* and
denote the received value by d;. Then we have

n+1 o

X dju(x) =0 forall k,
j=1

and so for every u in U,

n+1 _
) Zdju(xj)=0.
j=1
The J]’s are not zero and sg &j =—5g a;j_l, the opposite case would con-

tradict to the Haar condition, thus
in+1

d; = &j Zl |dj| have the desired properties.
J=

The construction of the best approximation on P may be the following.
The simultaneous equations for the a;’s and E

®  6)-S qu)=(~E j=1,2 .0+
i=1

are solvable, as a consequence of the alternation theorem of Cebysev.
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After multiplying (8) by d; and summing over all j, from (7) we have
n+1 n+1
S d,7(x) = [Z (- l)f-ldeE.
j=1 j=1
From (4) and (6) it follows that
Sdfa)=E or —E,

j=1
and therefore !

)

n+1

34,1 6)| = Ea 1, P)-

j=1 i

Thus E is determined and then one can solve (8) also for the a,’s, and

u() = > au ()

is the best approximation on P.

The Remez-algorithm gives a construction of a sequence of ordered sets
P, of n+1 points in Z, in such a way that the best approximation on P,
converges to the best approximation on Z, as k—~ .

The algorithm starts from an arbitrary ordered set R,

If the set P, is given, one can find E, (f, P,) and v, (x), the best approxi-
mation of f(x) on P,, as it was described.

If Teazx | fC)—vi (X)| = E,(f, P),

then v, (x) is the best approximation also on Z, according to the Cebysev
theorem. In the opposite case, one chooses a “maximum” point y, in Z for
the function | f(x)—v, (x)].

Let the (new) P,., be constructed by replacing one element of P, by
¥ So that after ordering the equalities

NO)  sg () =y () = — g (PR = vy (x§E5)

hold.
It is easy to prove the inequality:

(11) E,(f, Pes))=E (S, P).
In fact from (9), (6), (3), (4) and (11) it follows that

+1 n+1
En(fy Pesr) —En(fs Pi) = nZ djerD) f(xF D) — 3 [dFDLEL(f, Py =
j=1 j=1

n+1 n+1
= Z d§k+1) (f(x}"“))—vk (x}k+l)))‘ - 2 ]d§"+1)| E,.(f,P) =
j=1 j=1

_ nﬁ: ld§k+1)| (|f(x§k+1))_vk (x§k+1))| -E, (f, pk))'
j=
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Consequently
(12) E.(f, Pei))—EL(f, Py =
= 1] (max | ()=, ()] = Eq (f, Py)
is valid, since the numbers in the parentheses are zero except the j*-th one,

finally from (5) we get (11).
If an inequality

(13) |d§")| >e

is valid for all k with a positive ¢ independent of k, then we have from (12)
max | /)~ vy ()| =En(fy P+ (En(h Py = En (£, P2).
Therefore from (2) we have
max |fC)— v )| =En(f, Z)+—l— (En(fs Pixd) = Eo (f, Py)) -

But the numbers E, (f, Pr+1)— E,(f, P,) converge to zero, as they are
the differences of a bounded and increasing sequence.
Thus the inequality

(14) lim sup max | £(x)—v, (¥)| =E, (f,2)
k x€Z

holds.
If v (x) is an accumulation point of the v, (x)-s, then the relation

max | /() ~v ()| = En (/,2)

is valid, but the inequality is not possible, hence we have
max | f(x)—v ()| = E, (£, Z),
x€Z

i.e. v(x) is a best approximation on Z.

The sequence of v, (x) must have at least one accumulation point, since
they are elements of a finite dimensional space and form a bounded set.
The uniqueness of the best approximation assures the convergence v, (s) to
the element of best approximation on Z.

It remained to prove the validity of (13) with ¢ independent of £.

If such an ¢ does not exist, one can select a subsequence k” of indices k,
for which the following relations hold:

(15) d$¥)~0 for a fixed j*,
(16) X .g (€2) forallj, j=1,2,...,n+1.



ON THE REMEZ ALGORITHM 111

Let it (x) be the element of U,, which interpolates f(x) in the points &,
except gjs
(17) ) =r@¢), j=12...,n+l, j=j*.

Such an element exists because of the Haar condition. Taking into account
9), (3), (15)—(17) and the continuity of f and i, we get

n+1 ,
2,417 (x)
j=1

=3 a0 (1)~
j=1

But this contradicts to (11).

En(fypk') =

-0 for kK — o,

REFERENCES

[1] Tschebyscheff, P. L.: Sur les questions de minima qui se rattachent 4 la représentation
approximative des fonctions. Oeuvres, Bd. 1. St. Petersbourg, 273 —378. (1899).

[2] Tschebyscheff, P. L.: Sur les polynomes représentant le mieux les valeurs des fonctions
franctionaires élémentaires pour les valeurs de la variable contenues entre deux li-
mites données. Oeuvres, Bd. I1. St. Petersbourg, 669 —678. (1907).

[3] Remez, E. ja.: Sur la détermination des polyndmes d’approximation de degré donnée.
Comm. Soc. Math. Kharkov 10. 41 —63. (1934).



