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Abstract

A method for finding pseudo-peripheral nodes is described here. Based
on some previous results an important theorem is proved by which a theo-
retically based aspect for finding pseudo-peripheral nodes is becoming clear.
The method obtained in such a way seems to be a modification for the method
of Gibbs — Poole — Stockmeyer. After giving the description for the present
method a short discussion is showing its efficiency; in many of tested cases
it finds a pseudo-peripheral node at its first iteration step, while it requires
advantageously few computer operations.

Finally, some notes are showing how efficiently the proposed method
can be used, especially in bandwith/profile reduction orderings.

1. Introduction

In many application problems derived from undirected graphs, some-
times it is necessary to find peripheral (or pseudo-peripheral) node pair in
the graph. Such a typical application area is when sparse linear systems are
treated. Then for improving the efficient treating, different orderings [7],
[8], [9], [11], [12], [14] are used for utilizing the sparsity property in a
very high level. In all these ordering algorithms their main starting step is to
find a pseudo-peripheral node pair of the graph. There are two well-known
methods by N. Gibbs, W. Poole and P. Stockmeyer [12] and by A. George
and J. Liu [10], [11] for finding pseudo-peripheral nodes and both are widely
used and efficient algorithms. However, it is known that these methods have
been assumed to be heuristic algorithms till [3] has given a theoretical foun-
dation for them. So they are theoretically well-based, reliable and efficient
methods.

In this paper we describe a new aspect for finding pseudo-peripheral
nodes, which seems to be more efficient than either the GPS method [12] or
George’s method [10], [12]. First, the most important properties of the
pseudo-peripheral nodes are analysed. Then based on some previous results
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recalled from [2] an important theorem is proved, by which a theoretically
based aspect is shown for finding pseudo-peripheral nodes, by which the
present method is described. A short discussion is presented for pointing to
its efficiency, especially, to its arithmetic requirement.

Finally, some notes are showing its efficient usage within the bandwidth/
profile reduction orderings.

2. Some related definitions and notations

We use the notation G = (X, E) for undirected, connected graph; X is
its node set, E is its edge set.

For describing the distance between two nodes x, y€.X we use the nota-
tion d(x, y).

The eccentricity for arbitrary node x€ X is denoted by I(x).

For level structure [1] rooted at x€ X we use the notation

RLS (X) = {Lo (X), Ll (X), ) Ll(x) (X)}

and the last level in it is called its eccentricity level, denoted by L, (x). The
nodes belonging to L, (x) are the eccentricity nodes of the root vertex x.
Recall from [2] the reversible set term as follows.

Definition 2.1. For arbitrary pair of nodes x, y€ X their reversible set is

defined as
M(x,y) = (Mo (x, ), My (x,¥), - - -, Ms(x, D)}
where s = d(x, y)
M;(x,y) = {2lz€L;()NL; (x); i+]=d(x )},
(Gj=01,...,s=d(x,y)).

This term is playing an important role, when the distance function is de-
scribed in level structure background [2]. The following theorem is true.

Theorem 2.1. Let us consider RLS (x) for an arbitrary node x€X. Let
¥, z€ X\{x} be arbitrary nodes for which

yeEL;(x) O<i=l(x),

zeL;j(x) O<j=Il(x)
are assumed. Then
i+j—=2k (y,2)=d(y,2)
relation is true, where

ke, 2)=d(x, M(»,2)). O
(For proof see [2].)
Remark 2.1. We have to note, that as it is shown in [2], d (¥, z) can be
written in the following form:
d(y’ 2) = i+j—wx(y’ Z),
where w, (y,2)=0 and w,(y, 2)=2k,(y, 2) is also true.
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It is easy to see that
d(y,2) = i+]
is true if and only if x¢ M (y, 2) is satisfied.

3. Some previous results

First, we recall from [2] the pseudo-peripheral node term defined as
follows.

Definition 3.1. Let x€ X be an arbitrary node. Let y€ L, (x) be one of its
eccentricity node for which
l(y) = max [(2)
2€Lgc (x)
is satisfied. The node x is a pseudo-peripheral node, if [(x) =[(y) is true.

Nodes x and y form a pseudo-peripheral node pair and they are corre-
sponding to each other. The common value [(x) = [(x) is the corresponding
pseudo-diameter, with starting point x and endpoint y.

As it is shown in [3], nodes obtained by using GPS method [12] are
satisfying this definition. On the other hand, this term serves as the most
important basis in the foundation of a theoretical background for both the
GPS method [12] and for its different versions [10].

The following statements are also true.

Theorem 3.1. If x€ X is pseudo-peripheral node, then for every y€L, (x)
[(x) = L)
relation is held. O
For proof see [2].
We have to note, however, that is may happen as it is shown in [2],
[3], that although x is pseudo-peripheral node, then for a node z¢ L, (x) there
exists ueL, () for which

L(u)=1() = 1(x)

is obtained. Consequently, the pseudo-peripheral node term is non-sym-
metric. Its symmetric version was also introduced in [2] as quasi-peripheral
node term.

Remark 3.1. If x€ X is a pseudo-peripheral node, then for its each eccen-
tricity node y€ L, (x) x and y form pseudo-peripheral node pair with pseudo-
diameter [(x), and they are corresponding to each other.

Finally, recall from [2] an important theorem as follows.

Theorem 3.2. Let x¢ X be an arbitrary node. Let y€ X be such an eccen-
tricity node of x, for which y€L, (x); [(y) = max [(q). Let 2z¢ X be an ar-
q X;
bitrary eccentricity node of y, so 2z€L,.(). “
If

3.1 XEM(y, 2)

is true, then z is a pseudo-peripheral node; z and y are pseudo-peripheral
pair corresponding to each other. ]
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4. New aspects

It is clear from theorem 3.2 that if we want to find a pseudo-peripheral
node, then such a node x has to be found for which (3.1) is satisfied. In this
section we consider what kind of nodes are satisfying (3.1). The following
theorem is true.

Theorem 4.1. Let x€ X be an arbitrary node from which let us generate
RLS (x). Let seL,.(x) be a node of largest eccentricity in L, (x). Then for
every t€L,.(s)

w.(t,s) = min w.(t,y)
yeLec(x)
is true, where

0=w, (t, s)=2d (x, M(},5)). O

Proof. By the assumption let s€ L, (x) be a node of largest eccentricity
in L, (x), that is

4.1) I(s) = max I(2).

2€Lge(X)
Let t€L,.(s) be an arbitrary eccentricity node for s. Then for every y€L,.(x)
4.2) dit,s)=d(,y)

is satisfied, since from (4.1) [(s)=1(y) follows. Now, let us use Theorem 2.1
for describing the distances in (4.2), then

(4.3) d(t,s) = d(t, x)+d (x, )~ w, (),

(4.4) d(t,y) =dt,x)+d(x,y)=wi (¢, )

are obtained. Since, it is assumed that s, y€ L, (x) so in (4.3) and (4.4)
d(x,8) =1(x); d(x,y)=1()

are satisfied respectively. So the only difference in their forms is in their w, -
values. It can be seen easily that all the distances between any node of L, (x)
and t€ L,.(s) can also be written by the same two distances (d (¢, x) and [(x)),
and the corresponding w,-member. Consequently, from (4.2)

d(t, x)+1(x)—w,(t, s)=d(t, x)+1(x)—w.(, )

follows, from which
(45) W, (t, Y)=w, (t,3)

is obtained for every y€L,.(x). That is, distance formed by the above two
distances takes its maximal value if the corresponding w -value is minimum.
Consequently,

(4.6) w.(f,s) = min w,({,y)

Y€Lpe (x)
is really satisfied. O
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Remark 4.7. In the proof t€L, (s) was chosen arbitrarily. Instead, if we
choose z¢ L, (s) for which

4.7) d(z,x) = min d(t, x)
€Ly, (s)
is true, then

(4.8) W, (2, S)=w, (t, s)
is satisfied.

Proof. It is known, that for a given node p€ X [(p) is fix value. So I(s) =
= d(t, s) is also well-defined value, and

d(t, s) = L(x)+H (s)=2l(x)
where 0= H (s)=I[(x). That is
d(t, X)+1(x)—w,(t,s) = [ (x)+ H (s)
(4.9) d(t, x)—w,(t, s) = H(s)

is followed, where H (s) is fixed by s.

It is clear from (4.9), that d(f, x)=H (s). On the other hand, if we
choose z€ L, (s) for which (4.7) is satisfied, then the corresponding w -value
is decreased, that is
(4.10) we(z,8) = min w.(t,s)

t€Lgc ()
is true, where for every w,(f,s) (4.6) is satisfied by the above theorem.
Consequently, (4.8) is really satisfied. O

Conclusion 4.1. If in (4.10) w (z,s) =0 is true, then
d(z,8) =d(z,x)+d(x,s)

is followed. Here by the sense of remark 2.1 k. (2, s) = O necessarily follows,
consequently
d(x,M(z,8)) =0
has to be satisfied.
In this case we are given the nodes

X€X, s€Ly(x), 2€L(9),
where [(s) = max [(y), while xe M (2, s) is true.

y X,

That is, all the conditions of theorem 3.2 are satisfied, consequently,
z is pseudo-peripheral node, and z and s are forming pseudo-peripheral pair,
and they are corresponding to each other.

We have to note, in addition, that in most of the tested cases w, (z, s) =
= 0 is obtained. Consequently, in most cases for arbitrary node x€ X its ec-
centricity node of largest eccentricity is to be the endnode corresponding
to z€ L, (s) (defined by 4.6)) pseudo-peripheral node.

The above discussion serves as a theoretical foundation for our present
method.
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5. An example

For illustrating the above result let us see an example shown in Figure 1.
Let us consider node x (in Figure 1) as the node chosen arbitrarily.
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Then generating RLS (x) its levels are shown in Figure 2, from which

Lec(x) = {ylr Yar Var Vas ys},
Ix)y=4

Figure 1.

are obtained.
The related eccentricities are as follows

L) =10)=17

l(y3) =5
ly)=4
[(ys) =6

from which
10h) = 10n) = max [(y))
is obtained. o
Let us generate RLS(y,) and RLS(y,), then

L, O/I) = {21, 22}’ L, (y2) = {er 22}
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Ly(x) -

Figure 2.

are obtained. Here d(2,, x) = d (25, x) = 3, so both 2z, and z, are satisfying
(4.7). Now, let us create reversible set M (y,, 2,). Then by generating RLS (y,)
and RLS (z,) their levels are shown in Figure 3, signed by single and dotted
lines, respectively, while nodes belonging to M (y,, 2,) are denoted by small
squares. In Figure 3 the sign of x is showing that xe M (y,, 2,) is true, in fact,
that is w, (¥,, 2,) = 0 is obtained here.

However, if we would choose any node in L, (x) having not the largest
eccentricity, say y,, then L, (ys) = {2y, 2,}. As Figure 4 is showing, now
x§ M (ys, 2,) is satisfied, since

d(x, M(y3,25)) = 1

is true, and w, (y;, 2;) = 2.
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Figure 3.

It can be checked easily, that

d(x’ M(}{,, 22)) = 2’ W, (y4> Z2) =4 ’
d(x’ M(ys» 22)) =3, wx'(ys» 22) =6

are true. That is
W, (V1 22) = 2325 Wy (Vir 22)

is really satisfied.
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6. Remarks on GPS method

As a result of the above discussion the efficiency of GPS method can
be increased by the following proposals.

— The starting point selection step can be disregarded, because every
node x can be used for this reason.

— Instead of turning to the next iteration step when a node of larger
(than [(x)) eccentricity is found we had better check all nodes in
L, (x) by their eccentricities for looking for pseudo-peripheral end-
node in L, (x).

Applying the above suggestions to GPS method in many tested cases a
pseudo-peripheral node is found at its first iteration step.

7. Present method

Our suggestions in the previous section are to be an immediate con-
sequences of theorem 4.1, by which a modified version of GPS method is
obtained as follows: '

Let the starting point x be chosen arbitrarily.
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Step 1. (Level structure generation)
Let us generate RLS (x)
RLS (x) = {Lo (x), L (%), - . -, Ly (1)).
Step 2. (Find the node of largest eccentricity)
Check all the nodes in L, (x) for finding the node of largest eccen-
tricity (denoted by y).
Step 3. (Test for termination)
If 1 (y) = [ (x), go to step 4;
otherwise x <y and go to step 1.
Step 4. (Exit)
Nodes x and Vv=z€L, (x) form pseudo-peripheral node pair corre-
sponding to each other (x is the starting point; z is the endpoint).

The algorithm presented here seems to be a modification of the GPS method.
It is very simple, reliable and theoretically well-based method requiring only
advantageously few computer operations. In many practical cases a pseudo-
peripheral node is found at its first iteration step. Then the number of level
structures to be generated is | L, (x)| + 1.

On the other hand, the amount of work required for its computer imple-
mentation is also advantageous. As it is known, A. George and J. Liu in their
excellent work [11] gave some very useful and reach descriptions about
the most important subroutines used by the SPARSPAK. Among others
there is the subroutine ROOTLS for generating rooted level structure on
connected components of a graph. Now, by using it only a few additional
work is required for implementing the presented method, in addition, it
can be fitted easily also into the SPARSPAK.

8. Efficient usage in bandwidth reduction

In solving the bandwidth reduction problem a level structure is needed
whose length is as large as possible while its width is the possible smallest
one. A. George and J. Liu solved this two aimed problem by their strategy
2 [10] and the number of nodes starting from which RLS-generation had to

be tried is approximately ‘% , (as the authors said in [10]). Whereas, by

using the method presented here this number can be reduced to |L, (x)| + 1.
On the other hand, after having got the result node y different level struc-
tures whose lengths may be greater (see section 2) or equal to /(y) can be gen-
erated, in a number |L, (y)|. In addition, if peL, (y) is found for which
[(p)=1(y), then probably “better” level structure is obtained. Here only
a little work is needed to select the best one from them.

Finally, we have to mention, that all the pseudo-peripheral node finder
methods, including also the presented method, have a common problem.
Namely, never is known whether the result nodes determined are exactly
peripheral nodes. For solving this open problem further research is required.
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