ON THE SMALLEST AND LARGEST ELEMENTS

By

Á. VARECZA

(Received 15 May, 1981)

1. Introduction

Let $H = \{z_1, z_2, \ldots, z_n\}$ be a finite ordered set (say, different real numbers). However, the ordering is unknown for us. There are many cases when we want to obtain certain information concerning H using pairwise comparisons of its elements.

The simplest question of this type: Which is the largest (smallest) element in H? It is easy to prove that any strategy finding the largest element needs at least $n - 1$ comparisons.

Pohl [4] proved that at least $n + \left[\frac{n}{2} \right] - 2$ ([x] denotes the smallest integer $\leq x$) comparisons are needed if we want to determine the largest and smallest elements simultaneously (see also [3], [5]).

To find the two largest elements, $n + \left[\log_2 n \right] - 2$ comparisons are needed [2] (for similar results see also [1], [3], [5]). Moreover it is proved [6] that it is impossible to find a pair of consecutive elements with a smaller number of comparisons. In a recent paper [7] it is proved that we need $2(n-2)$ comparisons if we want to decide whether z_i and z_j are neighbouring elements in H (z_i, z_j are arbitrary elements of H).

In this paper we shall solve the following problem: What is the minimal number of comparisons needed to decide whether z_i and z_j are the largest and the smallest elements (in this order) in H. The answer is $n + \left[\frac{n}{2} \right] - 3$ ($n \geq 3$). We also solve the modified problem, when the question is if the pair z_i, z_j coincides with the pair of the largest and smallest elements, regardless of their order.

The result is, surprisingly, slightly more than $n + \left[\frac{n}{2} \right] - 3$, namely, $n + \left[\frac{n-1}{2} \right] - 2$ ($n \geq 3$). Our method gives a new proof for Pohl's result as well.
2. Notations, definitions

The first pair to be compared is denoted by \(S_0 = (c, d) \). If the result of the comparison is \(c > d \) then the value of the variable \(e_1 \) is 1, and in the opposite case \(c < d \) \(e_1 = 0 \). The choice of the next pair \(S_1 (e_1) \) depends on \(e_1 \), say \(S_1 (e_1) = (e(e_1), f(e_1)) \). Define \(e_2 \) to be 1 if \(e(e_1) > f(e_1) \) and to be 0 otherwise. Continuing this procedure in the same way,

\[
S_{i-1} (e_1, e_2, \ldots, e_{i-1})
\]

is defined for some 0—1 sequences \(e_1, e_2, \ldots, e_{i-1} \) with the restriction that if \(i \geq 2 \), and \(S_{i-1} (e_1, e_2, \ldots, e_{i-1}) \) is defined then \(S_{i-2} (e_1, e_2, \ldots, e_{i-2}) \) is defined too. The value of \(e_i \) is 1 or 0 according to whether the first or the second member of \(S_{i-1} \) is larger. A set of questions put in this way will be called a strategy suitable for deciding the problem "whether or not \(z_i \) is the largest and \(z_j \) is the smallest element in \(H \)" iff for all sequences \(e_1, e_2, \ldots, e_i \) if

\[
S_{i-1} (e_1, e_2, \ldots, e_{i-1})
\]

is defined, but

\[
S_i (e_1, e_2, \ldots, e_i)
\]

is not, then

\[
\begin{align*}
& \text{the answers } e_1, e_2, \ldots, e_i (\text{to the questions } S_0, S_1 (e_1), \\
& \ldots, S_{i-1} (e_1, \ldots, e_{i-1})) \text{ decide the problem, whether} \\
& \text{or not } z_i \text{ is the largest and } z_j \text{ is the smallest element in } H.
\end{align*}
\]

We use the notation \(\mathcal{S} \) for such a strategy. We say that a strategy \(\mathcal{S} \) is finished for the sequence \(e_1, e_2, \ldots, e_i \) if conditions (2)—(4) are satisfied. The maximum length of the sequence \(e_1, \ldots, e_i \) finishing the strategy is called its length. It will be denoted by \(L (\mathcal{S}) \).

Denote by \(T_i (e_1, e_2, \ldots, e_j) \) the inequality corresponding to \(e_i \). Now we can express condition (4) in a modified way:

The inequalities

\[
T_1 (e_1), T_2 (e_1, e_2), \ldots, T_i (e_1, e_2, \ldots, e_i)
\]

decide whether or not \(z_i \) is the largest and \(z_j \) is the smallest element in \(H \). Let the situation after answering the question \(S_{i-1} (e_1, e_2, \ldots, e_{i-1}) \) be called the situation \((e_1, e_2, \ldots, e_i) \) of \(\mathcal{S} \), that is, we have then the inequalities \(T_1 (e_1), T_2 (e_1, e_2), \ldots, T_i (e_1, e_2, \ldots, e_i) \). This system of inequalities will be denoted by \(\mathcal{E}_i \). The extension of \(\mathcal{E}_i \) consists of all the inequalities \(z_r < z_t \) which can be deduced from \(\mathcal{E}_i \). It is proved (Lemma 0 in [7]) that if \(z_r < z_t \) follows from \(\mathcal{E}_i \) then there is a chain of inequalities

\[
z_r = z_{r_1} < \ldots < z_{r_k} = z_t
\]
where $z_{r,v} = z_{r,v+1}$ (1 ≤ v ≤ k) are in \mathcal{E}_v. We now introduce the concept of graph-realization. Let us regard the set H as the vertex set of a directed graph G. Let the comparison of any two elements of H be an arc in G, directed from the greater element (vertex) to the smaller one. In the state $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_i)$ let G^i denote the graph derived in this way. H is totally ordered, so G^i contains no directed cycle. By the above correspondence, with every state of \mathcal{S} we associate an oriented graph. It follows from the correspondence that in an arbitrary state $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_i)$ of \mathcal{S} the relation $e \rightarrow f$ is realized if and only if a directed path leads in G^i from e to f. If \mathcal{S} is finished and z_i is the largest and z_j is the smallest element, then (by Lemma 0 of [7]) there exists a directed path from z_i to all the other elements of H and there exists a directed path to z_j from all the other elements of H.

We can define in a similar way a strategy which can determine the largest and smallest elements simultaneously, and another strategy which can decide whether z_i and z_j are the largest and smallest elements in H (regardless of their order). For this purpose it will be better to use the notations $z_i = z_1 = x$ and $z_j = z_2 = y$, i.e. $H = \{x, y, z_3, \ldots, z_n\}$.

Let \mathcal{S}_1 be a strategy which can define the largest and smallest elements of H simultaneously; let \mathcal{S}_2 be a strategy which can decide whether x and y are the largest and smallest elements in H (regardless of their order); and let \mathcal{S}_3 be a strategy which can decide whether x is the largest and y is the smallest element in H.

3. The results

We shall prove the following theorems.

Theorem 1. (Pohl [4])

\[
\min_{\mathcal{S}_1} L(\mathcal{S}_1) = n + \left\lfloor \frac{n}{2} \right\rfloor - 2 \quad (n \geq 2).
\]

Theorem 2.

\[
\min_{\mathcal{S}_2} L(\mathcal{S}_2) = n + \left\lfloor \frac{n-1}{2} \right\rfloor - 2 \quad (n \geq 3).
\]

Theorem 3.

\[
\min_{\mathcal{S}_3} L(\mathcal{S}_3) = n + \left\lfloor \frac{n}{2} \right\rfloor - 3 \quad (n \geq 3).
\]

Proof of Theorem 1. It is easy to find a strategy satisfying (6) (see [3], [4], [5]).

It remains to prove

\[
L(\mathcal{S}_1) \equiv n + \left\lfloor \frac{n}{2} \right\rfloor - 2
\]

or any strategy \mathcal{S}_1.

This will be done in the following way. An algorithm will be given which determines a branch of the strategy, that is, a sequence $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_l$ finishing it.

This branch will have a length $\geq n + \left\lfloor \frac{n}{2} \right\rfloor - 2$. The algorithm determines the ε's recursively. Partitions of H will be used. The partitions will also be defined recursively, for any situation $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_i)$ along the indicated branch. The branch and the partitions will be determined simultaneously. A partition has three classes: $H = N^i \cup K^i \cup A^i$.

At the beginning $A^0 = H$, $N^0 = K^0 = \emptyset$.

Suppose that $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_i$ and A^i, N^i, K^i are already defined. Then the next description determines ε_{i+1} and A^{i+1}, N^{i+1}, K^{i+1}.

Let $S_i(\varepsilon_1, \ldots, \varepsilon_i) = (g, h)$. The new values of ε_{i+1}, A^{i+1}, etc. will depend on the classes containing g and h, respectively. The cases obtained by interchanging the role of g and h will not be treated separately. As regards A^{i+1} etc., we shall only indicate the new class for an element. Then it will be obviously omitted from its old class. The system of inequalities

$$T_1(\varepsilon_1), T_2(\varepsilon_1, \varepsilon_2), \ldots, T_i(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_i)$$

is denoted by \mathcal{C}_i where $\varepsilon_1, \ldots, \varepsilon_i$ go along this branch.

Definition of the $(i+1)$-st point of the branch:

\begin{itemize}
 \item case 1: $g, h \in A^i \quad \varepsilon_{i+1} = 1, \quad g \in N^{i+1}, \quad h \in K^{i+1}$
 \item case 2: $g, h \in N^i \quad (K^i) \quad \varepsilon_{i+1} = 1, \quad g \in K^{i+1}$
 \item case 3: $g \in N^i, \quad h \in A^i \cup K^i \quad \varepsilon_{i+1} = 1, \quad h \in K^{i+1}$
 \item case 4: $g \in A^i, \quad h \in K^i \quad \varepsilon_{i+1} = 1, \quad g \in N^{i+1}$.
\end{itemize}

In this way we defined a branch $\varepsilon_1, \ldots, \varepsilon_i$ of the strategy \mathcal{S}_i. It will be denoted by P_i. The length $|P_i|$ of P_i is l. We shall prove $l \equiv n + \left\lfloor \frac{n}{2} \right\rfloor - 2$ with a sequence of lemmas, valid for this special branch.

Lemma 1. $a \in N^i(K^i)$ implies $a \in N^r(K^r)$ for any $r > i$.

Proof. It can be easily seen by checking the cases of the definition of P_i.

Lemma 2. Suppose that $a < b$ is an inequality in \mathcal{E}_i and $a \in N^i \quad (b \in K^i)$. Then $b \in N^i \quad (a \in K^i)$ follows.

Proof. It is sufficient to prove the first statement. The other one follows analogously.

Thus, suppose that $a < b$ is in \mathcal{E}_i and $a \in N^i$. It follows that $S_j(\varepsilon_1, \ldots, \varepsilon_j) = (a, b)$ (or (b, a)) for some $j < i$ and $\varepsilon_{j+1} = 0$ (or $= 1$).

It follows from Lemma 1 that $a \in N^i \cup A^i$. If $a \in N^i$ then the statement follows from case 2 evidently.

If $a \in A^i$, then $b \in A^i \cup N^i$ and $b \in N^{i+1}$, $a \in K^{i+1}$ follows from cases 1 and 3 and $a \in K^i$ follows from Lemma 1, and this is a contradiction.

The lemma is proved.
Lemma 3. If $a \in N^i$ then there is an inequality $a \rightarrow b$ in E_i with $b \in K^i$. Analogously, if $a \in K^i$ then there is an inequality $a \leftarrow b$ in E_i with $b \in N^i$.

Proof. We prove the first half of the statement only, the other half can be proved in the same way. Thus suppose that $a \in N^i$.

Let $(\epsilon_1, \ldots, \epsilon_j)$ be the situation for which $a \in N^j$ but $a \notin N^{j+1}$. It follows from cases 1 and 4 that a occurs in the question $S_j(\epsilon_1, \ldots, \epsilon_j)$, say $S_j(\epsilon_1, \ldots, \epsilon_j) = (a, b)$. It follows from cases 1 and 4 that $a \in A^j$ and $b \in A^j \cup K^j$ and $a \notin N^{j+1}$, $b \in K^{j+1}$. Lemma 1 implies $b \in K^i$.

The lemma is proved.

Lemma 4. If the strategy is finished for the sequence $\epsilon_1, \epsilon_2, \ldots, \epsilon_i$ then $A^i = \emptyset$.

Proof. Suppose on the contrary that $A^i \neq \emptyset$. If $a \in A^i$, then a is not in E_i and a can be the smallest and largest element of H. This contradicts the supposition that the strategy is finished.

Let us turn back to the proof of (9).

Suppose that our strategy δ along branch P_1 is finished after the l-th comparison. It follows from Lemma 4 that $A^l = \emptyset$. Consequently,

$$|N^l \cup K^l| = n$$

holds. Let $|N^i| = i$, $|K^i| = j$ where $i + j = n$. Consider the graph G^i. Denote the largest element by x and the smallest one by y. It follows from the definition of P_1 that $x \in N^i$, $y \in K^i$, and to all elements ($\neq x$) of H (N^i) there is a directed path from x, and from all elements ($\neq y$) of H (K^i) there is a directed path to y. First we consider those inequalities $a \leftarrow b$ in E_i where $a \in N^i$, $b \in N^i$. Take the corresponding edges in G^i. There is a path from x to any element of N^i. This path cannot go through an element of K^i by Lemma 2.

Therefore the subgraph induced by N^i is connected. Consequently there are at least $i - 1$ edges among the vertices in N^i. That is, the number of inequalities $a \leftarrow b$ in E_i where $a, b \in N^i$ is at least $i - 1$. Similarly, there are at least $j - 1$ inequalities with $a, b \in K^i$.

Consider now those inequalities $a \leftarrow b$ in E_i where $a \in K^i$, $b \in N^i$. One of i and j is at least $\left\lfloor \frac{n}{2} \right\rfloor$. Suppose that $|N^i| \geq \left\lfloor \frac{n}{2} \right\rfloor$ holds. Then, by Lemma 3, there are at least as many such inequalities in E_i. Summing up our results:

$$l \geq i - 1 + j - 1 + \left\lfloor \frac{n}{2} \right\rfloor = n + \left\lfloor \frac{n}{2} \right\rfloor - 2.$$

Theorem 1 is proved.

Proof of Theorem 2. It is easy to find a strategy satisfying (7).

Let x and y be these elements of H, we want only to decide whether x and y are the largest and smallest elements.

Let $S_0 = (x, z_2), S_1(\epsilon_1) = (y, z_3)$.

If $\epsilon_1 = 1$ ($\epsilon_1 = 0$) and $\epsilon_2 = 1$ ($\epsilon_2 = 0$) then δ_2 is finished and the answer is no.
Suppose that $\varepsilon_1 = 1$ ($\varepsilon_2 = 0$) and $\varepsilon_2 = 0$ ($\varepsilon_2 = 1$), that is, $x > z_3$ ($x < z_3$) and $y < z_3$ ($y > z_3$). We determine the largest and smallest elements of $H - \{x, y, z_3\}$ simultaneously. It follows from Theorem 1 that we can do it by making $n - 3 + \left\lceil \frac{n - 3}{2} \right\rceil - 2$ comparisons.

Denote by a (b) the largest (smallest) element of $H - \{x, y, z_3\}$.

Now we compare elements x and a (y and a) and elements y and b (x and b). If $x > a$ ($y > a$) and $y < b$ ($x < b$), the answer is yes, otherwise the answer is no.

The number of comparisons is

$$2 + n - 3 + \left\lceil \frac{n - 3}{2} \right\rceil - 2 + 2 = n + \left\lceil \frac{n - 1}{2} \right\rceil - 2.$$

This proves:

$$\min \limits_{\mathcal{S}_2} L(\mathcal{S}_2) \leq n + \left\lceil \frac{n - 1}{2} \right\rceil - 2.$$

It remains to prove

$$L(\mathcal{S}_2) \leq n + \left\lceil \frac{n - 1}{2} \right\rceil - 2$$

for any strategy \mathcal{S}_2.

This will be done similarly as we have proved Theorem 1. Consider branch P_1 of strategy \mathcal{S}_2. We shall use the subsets A, N, K of H, similarly as we have used them in the proof of Theorem 1. Now we shall use a modification of P_1.

Let $S_i(\varepsilon_1, \ldots, \varepsilon_i)$ be the first comparison involving the element x or y, that is, the comparisons $S_j(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_j)$ with $j < i$ do not involve x and y.

We can suppose that x occurs in $S_i(\varepsilon_1, \ldots, \varepsilon_i)$. If $S_i(\varepsilon_1, \ldots, \varepsilon_i) = (g, h)$ then we define the $(i+1)$-st point of the branch:

case 5: $g = x$, $h = y$, $\varepsilon_{i+1} = 1$, $x \in N^{i+1}$, $y \in K^{i+1}$ and if $S_r(\varepsilon_1, \ldots, \varepsilon_r) = (x, b)$ ($b \in H$, $r > i$) then $\varepsilon_{r+1} = 1$, and if $S_r(\varepsilon_1, \ldots, \varepsilon_r) = (y, b)$ ($b \in H$, $r > i$) then $\varepsilon_{r+1} = 0$.

case 6: $g = x$, $h \in K^i \cup A^i$, $\varepsilon_{i+1} = 1$, $x \in N^{i+1}$, $h \in K^{i+1}$, $y \in K^{i+1}$ ($h \neq y$) and if $S_r(\varepsilon_1, \ldots, \varepsilon_r) = (x, b)$ ($y, b)$ ($r > i$), then $\varepsilon_{r+1} = 1$ (0) ($b \in H$).

case 7: $g = x$, $h \in N^i$, $\varepsilon_{i+1} = 0$, $x \in K^{i+1}$, $y \in N^{i+1}$, and ($h \neq y$) if $S_r(\varepsilon_1, \ldots, \varepsilon_r) = (x, b)$ ($y, b)$ ($r > i$, $b \in H$) then $\varepsilon_{r+1} = 0$ (1).

Denote by P_2 the modification of branch P_1. Obviously, if strategy \mathcal{S}_2 is finished along branch P_2, then the largest element is x (y) and the smallest one is y (x) in H. We can see easily that Lemmas 1, 2, and 4 apply here too, and the setting of Lemma 3 is not realized for element y only.

Suppose that our strategy \mathcal{S} along branch P_2 is finished after the l-th comparison.

Let $|N^i| = i$, $|K^l| = j$ ($i + j = n$).
Similarly to the proof of Theorem 1, we can determine the number of comparisons easily. The number of inequalities \(a < b\) in \(E_i\) where \(a, b \in N^j\) (\(a, b \in K^l\)) is at least \(i - 1\) \((j - 1)\), and the number of inequalities \(a < b\) in \(E_i\) where \(a \in K^l\), \(b \in N^l\) is at least \(\left\lfloor \frac{n-1}{2} \right\rfloor\).

Summing up our results:

\[
I = i - 1 + j - 1 + \left\lfloor \frac{n-1}{2} \right\rfloor = n - 2 + \left\lfloor \frac{n-1}{2} \right\rfloor.
\]

Theorem 2 is proved.

Remark. It is easy to see that if \(n = 2\) then the minimal number of comparisons is 0.

Proof of Theorem 3. It is easy to find a strategy \(S_3\) satisfying (8). For \(n = 3\) let \(S_0 = (x, z_3)\), \(S_1(e_1) = (y, z_3)\), then \(S_3\) is finished and (8) holds. Suppose \(n \geq 4\). Let \(S_0 = (z_3, z_4)\) and suppose that \(e_1 = 1\) holds. Let \(S_1(e_1) = (x, z_3)\) and \(S_2(e_1, e_2) = (y, z_4)\). If \(e_2 = 0\) or \(e_3 = 1\) then \(S_3\) is finished and the answer is no.

Let \(e_2 = 1\) and \(e_3 = 0\), that is, \(x > z_3\) and \(y < z_4\). Now we determine the largest and smallest element of \(H - \{y, x, z_3, z_4\}\) simultaneously. It follows from Theorem 1 that we can do it by making \(n - 6 + \left\lfloor \frac{n-4}{2} \right\rfloor\) comparisons.

Denote a (b) the largest (smallest) element of the set \(H - \{x, y, z_3, z_4\}\). Now we compare element \(x\) with element \(a\), and element \(y\) with element \(b\). If the results are \(x > a\) and \(y < b\) then the answer is yes, otherwise the answer is no.

The number of comparisons is

\[
3 + n - 6 + \left\lfloor \frac{n-4}{2} \right\rfloor + 2 = n + \left\lfloor \frac{n}{2} \right\rfloor - 3.
\]

This proves:

\[
\min_{S_3} S_3 \leq n + \left\lfloor \frac{n}{2} \right\rfloor - 3 \quad (n \geq 3).
\]

It remains to prove

\[
L(S_3) \geq n + \left\lfloor \frac{n}{2} \right\rfloor - 3
\]

for any strategy \(S_3\) \((n > 3)\).

Consider branch \(P_1\) of strategy \(S_3\).

We will use subsets \(A, N, K\) of \(H\), similarly as we have used them in the proof of Theorem 1, and now we shall use a modification of \(P_1\).

Let \(N^0 = \{x\}, K^0 = \{y\}\) and if for any \(j\) \(S_j(\epsilon_1, \epsilon_2, \ldots, \epsilon_j) = (x, h)\) \((y, h)\) holds then \(\epsilon_{j+1} = 1\) \((0)\). Denote by \(P_3\) the modification of branch \(P_1\).

Obviously, if strategy \(S_3\) is finished along branch \(P_3\), and the answer is yes, then the largest element is \(x\) and the smallest one is \(y\).
We shall prove that the length of branch P_3 is at least $n + \left\lfloor \frac{n}{3} \right\rfloor - 3$.

We can see easily that Lemmas 1, 2, and 4 apply here too, and the setting of Lemma 3 is not realized for elements x and y only.

Suppose that our strategy S_3 is finished along branch P_3, after the l-th comparison.

Let $|N^l| = i$, $|K^l| = j$ ($i + j = n$).

Similarly to the proof of Theorem 1, we can determine the number of comparisons easily.

The number of inequalities $a < b$ in E_l where $a, b \in N^l$ ($a, b \in K^l$) is at least $i - 1$ ($j - 1$), and the number of inequalities $a < b$ in E_l where $a \in K^l$, $b \in N^l$ is at least $\left\lfloor \frac{n - 2}{2} \right\rfloor$.

That is, the length of branch P_3 is at least

$$i - 1 + j - 1 + \left\lfloor \frac{n - 2}{2} \right\rfloor = n + \left\lfloor \frac{n}{2} \right\rfloor - 3.$$

Theorem 3 is proved.

Remark. It is easy to see that if $n = 2$ then the minimal number of comparisons is 1.

Acknowledgement

Finally, the author would like to thank G. Katona for his valuable remarks.

REFERENCES

Bessenyei György Tanárképző Főiskola
Matematikai Tanszék
4400 Nyíregyháza, Sóstói út 31/b.