EVALUATION OF THE PRODUCT FORM IN CERTAIN
QUEUEING NETWORKS

By

TURUL TOROK
( Received February 5, 1982 )

Introduction

After some attempts, very different in efficiency and in aims, mean value
analysis turned out to be a computing procedure for closed queueing net-
works with constant intensity of exponentially distributed service times
(41, 171

Several authors discussed the evaluation of the product form stationary
distribution obtained by Jackson and generalized by others ([3], [2])-
Different recursive algorithms are known for this purpose ([1], [5], [6]).
In general the main problem arises when determining the normalizing con-

stant providing
2Pmn)=1.

Since the sum requires an enormous number of terms a closed form is pro-
posed.

§ 1. Product form

In the following the finite sun and different expectations are discussed
for probabilities of type

. K K
(1) P(n) = [ oy where n=(ny, ..., ng) and [n| = > n; =
i=1 i=1

(1) occurs when dealing with queueing networks consisting of K M/M/1
type systems as nodes. Customers wander among the K systems i.e. after
waiting and being served at a certain node, another one is visited, etc. The
routes are supposed to be determined by a matrix P whose element p;; is
the probability that after node i node j is entered. In this case in (1)

0; = Xj/u; where x; = Z XjPji
J=1

and y; is the mean service time at node i, x; is interpreted as the intensity
of visiting node i; n; is the actual number of customers present at node i.
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Unfortunately f’(n) fails to be a real distribution: 3 P(n)=1 is
In|=N

not sure. Thus a normalization constant > P (1) = C is needed to obtain
In[=N
the distribution !

(2 P(n)y=CP(n).

One of our aims is to give an explicit form for this constant with an

algorithm simpler than summing up all values P (n).
A model of M nodes with N wandering customers is denoted by (M, N)
and let

(3) C(M, N) 5 e
M,Ny=> = |
l; j];é]i (Qi 9])

§ 2. The normalizing constant
One of the main results is formulated as follows.

Theorem 1. For an (M, N) model with different intensities (o;#¢,), the
normalizing constant satisfies

(4) C=ZP(m)=CWMN). X
Proof. The first equation holds by definition. We prove the second one
by induction on M = 2,3, ..., with arbitrary N. If M =2 then

o Nt N PARE! oV +1
CeN) = 3 oiof="2 ==t =2

i+j=N 01— 02 01— 02 02— 1

Supposing the validity for M—1 let us consider

N N M-l Q?’H'N i-2
CM,N) =S o CM—-1,N—=i) = > oly- Z O
i=0 =0 = ]I (J__QK)
K=1
Kj

Changing the summation order we have
M—1 1

N
0227:1———_2 M+Nl2=

= pr
! ik (9;‘“91() ‘
K=1

Kx=j
M1 1 pMH+N=1_ pM+N-1
(5) =3 2
J= Bt 0;—0m
1T (e;—ox)

K=1
K=#j
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The first M—1 terms of (4) are on the right-hand side of (5) and the M-th
term is easy yielded since (cf. [&])

Q%—z M-1 QM 2 _[
—_— = ___sr |x
I (op—0)) ,=Zx 17 (0i—0p)

j=M

Remarks. 1. The value of the constant C, however, is not independent of
the choice of the p,. Namely, the limit

C* = lim C(M, N)

N+
depends on ¢ = max g, i.e.
0 if o<1
C* = finite i p=1
Ioo 0> 1 .

Table 1. demonstrates that if o = 1, the convergence of C* is far from being
slow. The well-known result

C(M, ) = _r
” (l —Qj
is easy obtained from (4).

2. The weakness of the present algorithm seems to be in the differences
e;—0; when they are close to zero. Fortunately

oN+M-1 . Q;VH-N 1 _ 1 . ngv:rM—ij_Q)}yw'-M—Lp'_
IT (ei—ex) T (ej—0x)  ei—¢; P;-P,
K=i Ksj

where
Pr= ][ (o—ox) (=1}))
K#=i
K#j
and in this case the numerator is ‘close to zero”’, too. Some numerical ex-
amples shed light on this fact.

Five models are evaluated with o, =1, 9, = .8, o3 = .5 and with
=.2+107F, o5 = .2-107L

Table 1

L=1 L=2 L=3 L=4 L=os
5,1) 2.7 2.7 2.7 2.7 2.7
(5,2) 4.6301 4.63 4.63 4.63 4.63
(5,5) 9.5566 9.5557 9.5557 9.5557 9.5557
(5,10) 13.595 13.593 13.593 13.593 13.593
(5,20) 15.408 15.406 15.406 15.406 15.406
(5,100) 15.627 15.625 15.625 15.625 15.625
(5,1000) 15.627 15.625 15.625 15.625 15.625
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As visible from the last column of Table 1 there is no theoretical hin-
drance to solve the restriction g;=p; if i>j. Dealing with finite sums, we
have

Thus supposing o,
nections we have

[l
)

m-1 =0 and g;=g; if i; ;<M then after some con-

CMN) =3 —L—
I )i (9] ~0k)
K=1
K#j
M=2 Q}"*”

+9N“-Zl [N+ D(e—o)—pgl.
= Il (Qj‘—QK)
K=1
K=j

It is obvious that if p<1 the second term tends very quickly to zero as N
increases.

Table I seems to support that a model with equal intensities can be well
approximated by those with different ones.

§ 3. The expectations

In the reality the number of customers at a node is a random variable
v;. P(n) was the probability that variable v, takes the value n; for all i. Let
E; denote the expectation of variable v;.

Theorem 2. For a model in Th. 1 the mean number of custoniers at node i is
e oM-2 0; (e —ol)
C(MrN) j#i H,(Qj_QK) 0j—0i

K#=j

Proof. For simplicity’s sake let i = M.

E;

—Ne?’]- x|

N
Ey = C(M, Ny S i-ghy-C(M—1,N —i) =
i=0

N ) ) M—1 ijf'}'N—i—'l
=CWMN)Y iy D =
=0 =1
' ! )i (@j—QK)
K#j
! 0f'~* > N-i
— C- . N -
=C Yy ;J' o 0]



EVALUATION OF THE PRODUCT FORM

97

The inner sums are easily evaluated as follows:

e; (e} —efy) N
——— = N-o¥|.
0j—0m
Thus the theorem is proved. [x]
Remark. If N— o and p, = maxg, =1 the well-known result E, =
= —1—9‘—- can be obtained since all terms in the sum vanish except the first
— 0
one:
9M+N—1 1
L = and C(M,N) = vE—
010 01—0; 77 (1—0)
i=2
The convergence of the finite means when N increases is demonstrated in
Tables 2—3.
Table 2
N Ey E; E, E, Es
1 .370 .296 .185 .0925 .0555
2 .7987 .6044 3454 .1592 .0922
5 2.401 1513 6770 .2642 .1449
10 5.9145 2.698 .9039 315 .1684
50 44.49 3.999 .99998 .3333 1764
100 94.49 4 1 3333 1764
1000 994.49 4 1 .3333 .1765
M=5; a1=1, 02=.8, e3=.5, e4=.25, gg=-.15
Table 3.
N E, E, E, E4 Eg
10 3.02 3.009 3.04 6724 .2550
100 33.75 32.89 32,07 .660 324
1000 420.33 322.10 256.18 997 332
5000 3561.76 944.42 492.48 1 1/3
10t 8501 998.18 498.95 1 1/3
108 98500 999.0 499.0 1 1/3

M=5; a1=1, 2=.999, e3=.

7 ANNALES Sectio Computatorica — Tomus I11.

998, q‘=.5, Q;=.25
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§ 4. Conclusions

The significance of the present paper seems to be in the basic importance
of the factors p;—p;. The small number of parameters (m intensities and M
transition probabilities in P) and the simple algorithms offer reason for be-
ginning each investigation, also in the case of more general models, with an
approximative consideration neglecting more detailed dependencies. Not only
the clumsiness of algorithms increases but the uncertainty of the measured
parameters as well, when dealing with more complicated models.
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