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1. Preliminaries. In the papers [I, 2, 3] the general definition of an
incompletely specified (or partial) finite automaton was proposed and some
special classes of such automata were introduced. In this paper the follo-
wing problems are solved. Let Ag, be a partial finite i-automaton [1].
At first itis necessary to answer if there is any probabilitic automaton in Age,.
Secondly it is necessary to specify in-correct form a partial finite pi-automa-

ton which is contained in Ag,. A special case of this problems was investiga-
ted in [2, 3].

2. Definitions. First of all we recall some definitions of the paper [1].
Hereafter we use the term automaton to mean a finite automaton.
Let us use the following notations (where «, f€{0, 1}):

 ((ifa=0"7 [)ifp=0
—{[ifazl’k_{]ifﬁ=l.

We also use the notations

R = (=, =),

R ={rlr =(ryre .. 1y, HER, =12, ...,n},
Q"’:”:{R'R:(rij)m,n? r,‘jE@; i=l,...,m, j=1,...,n}

for the sets of real numbers, vectors and matrices respectively, and the no-

tations
o = {rlref/@“, ri€l0,1], i=12...,n, Zr;= l},

Pt = (RIReRm ™, ry€[0 1], Zry=T,i=12.m j=1,2,....n}
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for the sets of all probabilistic (or stochastic) n-dimensional vectors and
mxn-matrices, respectively.

A partial vector with interval elements (an i-vector) is a subset of 2"
defined as

f={|r€f;Qn’ riefi’ i = 1,2,.._’,1}’
where

7i
fi=lc,di| #8, 0,9,€{0,1}, ¢;d;€R,
o

o;v; = 0=¢,<d;, 0,7, = Il=¢,=d;.
An i-vector is specified in the form

V2

; 71 n
(1) F=|ley dyl, ICZ’d2|!°'-»|cn’dn|]'
o1 o2 Gn
Accordingly, an i-matrix is a subset of R™ " defined as

R={RIRe®R™", ryefy, i=12....m j=12,...,n},

where

] )
r‘-]= lc,j,dul #g, O'U,yUG{O, 1}, Cij,dleQy
UU

oij vy = 0=>¢y<dy;, o047 = 1=’Cij5dij-

An i-matrix is specified in the form

~ 7ij
R=|lepdy]
U"j m

,n

[ s u)
-5 Gl

Let X = {X;, Xp, .., Xph V = {Vy, ¥V, ..., Vi), A={A, A, .., An)
be the alphabets of inputs, outputs and states, respectively. Then a partial
generalized i-automaton (briefly, an i-automaton) is a system

(2) A.gen = <X’ A» Y, ;(o), ié> ’
where

For example,

N
]

: 71 v m
I’(o)=[|C1d1|, lcz’dzl"“! |Cm'dm|]
oy

ag m
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is an initial i-vector and

7si, lj

ﬁ:[ | €siytjy dsiytj |

¢ i, lj nm, km

is a transition — output i-matrix.
An i-automaton (2) defines a set of completely specified generalized
automata such that

Agen € ANgenor(o) Ef(o)& Re¢ [\3'
where Agen = (X, A, YV, r@, R).
A partial probabilistic vector with interval elements (a pi-vector) is a subset
of D" defined as
D= {r|r€@", ri€f, i=12,...,n, 3= 1}
1
where
Bi

;i:' ai,bilglo,l], f,#@ fOl' i=l.2,...,ﬂ.

|
%
A pi-vector is specified in the form

*1 %

) N B2 bn

(3) p=[|a1’bII’ Iaz’b2|7"‘v|ambnl]
*n

where the obvious condition > r; = 1 is omitted.

bj
We say that a pi-vector is correctly specified if for each r;€ | a;, b; | there
* n
n

Bi
are r,€ |a;,b,| i#jsuch that 3r, = 1.
L5 s=1

A subset of (D™ " defined as

P:{P|Pe@’"'", rii€fi, Zj’rijzl, i=1...,m j=l,...,n}
where

ﬂii
,..l'jz |(1,J,bulg[0,1], i;lj¢ﬂ’ i=1,...,’n; j=],....fl
a”
is called a pi-matrix and is specified in the form where the obvious conditions
2 ri; = 1 are omitted. A pi-matrix is correctly specified if each of its rows

i; a correctly specified pi-vector.
For example,
[0,3; 0,6) (0,15 0,2] (0;3; 0,5]
P =( [0,5; 0,6] 02 [0,2; 0,3] )
[0,2; 0,41 [0; 0,3) (0,3; 0,8]
is a correctly specified square pi-matrix of order 3.
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A partial pi-automaton (briefly, pi-automaton) is a system
(4) ﬁpr = <X’ AY, I")(O)’Ifi>

where 7 is a correctly specified m-dimensional pi-vector (a partial initial
probabilistic distribution on the state set A) and p is a correctly specified
pi-matrix of size nmx km (a partial transition-output probability matrix).
A partial pi-automaton (4) defines a set of completely specified probabilistic
automata such that

Apr = <X’ A, y’ﬁ(O)py)EAP,QP(O)E[S(O)&PEP.

3. The problem. Now let us formulate the main problem of this paper.
Let ﬁgen be an i-automaton (2). At first it is necessary to answer the question
if there is any probabilistic automaton in the set ﬁg,n or not. And then it is
necessary to find a correctly specified pi-automaton A . such that A CAgen

and no probabilistic automaton belongs to the set Agen\A It is clear that
for the solution of this problem it is sufficient to solve an analogous problem
for an i-vector and a pi-vector.

4. The conditions of correct specification. In the paper [1] the follo-
wing theorem was proved.

Theorem 1. Lef p be a pi-vector (3). Then ﬁ is correctly specified if and
only if the following conditions hold forj = 1, ..., n:

i#j
and a
isj
(7 bj=1-2a, l
isj
and [
(8) bj=l-—za,&3,:i;éj, ozi=0=>‘31=0. ]ZI
isj

This theorem makes it possible to answer the question whether a pi-
vector p is correctly specified or not.

5. The solution. The following two theorems give the solution ot the
problems formulated above.

Theorem 2. Let 7 be an i-vector (1).
Let c;, o] be defined as

, e if ¢;=0 , o, if ¢;=0
G = . o = .
0 if ¢;<0 1 if ¢,<O0.
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Then F NP =@ if and only if the following conditions hold :
@) 2ce=1 and ¢=I1=&s =1
i i i

(b") d=0;, i=1,...,n, 2di=1 and Jd,=1=2&y, =1.[x
i i i

Proof. For the proof of necessity let p = (py, Py, - . ., p,,) be a probabilis-
tic vector (p€(D") such that pef. Then p,€[0, 1], 3 p, = | and for every i
Vi Vi !
pi€lendi 1Sl end;].
g o;
This implies that
7i
[0, 1IN ¢ d; |0, i=1,...,n,
©) ‘
2 pi=lelc, Zdl,
where ¢ = &0}, y = & y,. The necessity of conditions (a”) and (b) obviously
follows from (9).
Conversely, assume that conditions (a’) and (b”) hold for 7. We prove the

existence of a probabilistic vector p such that pe7#NP". From (a’) and (b’)
wehave thatif d;=c{fori=1,...,n then Y d;= 3 ¢; = 1,&0; =& y;=1.

~ { L 3 14
Thus if p,=d, for i =1, ...,n then perN¢n. If thereis an hsuch thatd,>c;
then 3'(d;—¢;)=0 and we take the following elements of the vector p
1

1-2¢
10 =c+——2"(d, =), j=1,...,n.
( ) p] J Z(d,—C:) (j j) J
From (a’), (b’) and (10) we have that
'Vj Vj .
pJGI’C},d,-IQICj,de; j=1,---,n; ij=];
° )

J
i.e. pef and pen. This completes the proof of Theorem 2. [X]

Theorem 3. Let 7 be an i-vector (1) such that conditions (a’) and (b’)
hold. Let ¥ be an i-vector defined as

&1 €2 €n
(11) r"=[|u1,v1|,|u2,v2[, ""Iumvnl]’
1] 2 [
where

¢ ¥i
(12) ‘slu,,v,-|=|c,-,d,~|r|[O,l] i=1,...,n.
i 7
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Then a pi-vector (3) is correctly spec:fzed and p = rN\P* if and only if the
Sfollowing conditions hold for j = 1,

(13) b; = mm(vj, 1 —l%u,.),
(14) a; = max( Zb)
i
(15) ﬂj=0c>(bj=vj)&(sj=0)V( —I—Zu)&al;rf] 0, =0,
i
(16)  a;=0e(q; = u)&(5; = O)V(aj I—Zb)& Ji#j:8,=0. X
i

Proof. Since conditions (a’) and (b’) hold for 7, thus r D" 0. In accor-
dance with (I1) and (12), 7/ <7 and 7 N‘Pr=r NP~ Then conditions (a”) and
(b) hold for 7’ too, i.e.

2u=1 and Ju,=I1=&4§,=1,
7 i i
Dvi=1 and v, =1=2&e — 1.
i i i

Let p be defined as in (3) and (13) - (16) and p = (py, Po -, Py) be @
probabilistic vector (p€D") such that per’. Then for the vector p Zp,_l
and

&
(17) pi€lu,v,| <0, 1], i=1,...,n
o
holds. This implies that
(18) Pf={5bj e =l
<v; if e;=0
and
Isl—Zu,. it &6,=1,
19 : = i e
(19) i= %p, l<1—2ui if 3i:i=j, 6,=0.
i#j

Then in accordance with (18), (19), (13) and (15)
B;=0=p;<b; = mm(vj, I —Zu)

]

(20)
Bj=1=p;=b; —mm( Zu)

izj

From (17) we have also that

=u; if 6, =
@1) :{ j 1Y,
Fi =u; if ;=0
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and in accordance with (20)
I’>l—2b if 3i:i=),8,=0,

i#
22 é;p’_lal—zjb,. if &g, =1.
i=j i#=f
It follows from (21), (22) and (14), (16) that
«;=0=p;>aq; _max( 2 )
(23)
;= l=p;=a; _max( 1gjb)

Then in accordance with (20), (23) p;€ |aj, j| ] =1, ...,n le peF=pecp

and therefore for p the conditions (a) and (b’) hold.
Conversely, assume that pep, where pis defmed as in (3) and (13)—(16).

It follows from (13)—(16) that Ia,,b |C|u,,v| fori=1,...,nand pcr’.
Therefore for every pepr
peFr'epep
p=Fnpr=inDr.

Now it is necessary to prove that if a pi-vector p is defined as in (3) and
(13)—(16) then it is correctly specified, i.e. that for p conditions (a) and
(b) hold. From (14) and (16) we have that for p (5) and (6) hold. Therefore it
is necessary to prove only that for p (7) and (8) hold.

Assume that

and

(24) aj _ ‘[llj, j#jp]:zy . ...,:ik: .
ll“‘éjbv I =Jvle - Jio

and consider thecasej = j; v =1, ..., k.
In accordance with (24)

Sa= X utk- 3 3o

i#j i#], jy K j#Edy
. v=1,...,k
and since
2 b‘.:. 2 bj,,+ Z bi+bj’
ijy v=1, ..., k-1 i, jy

r=1,...,k
thus
(25) I—Za = 2 (b —u,)-i-(k—l)(Zb——I)

i=j 1], j,
r=1,..., k
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If £ = 0 then from (23), (13) we have 1—20 1—2 u;=b;. Since

bj=a;=u;fori =1, ..., nand Zb =1, thus for k>1 we have 1- 3 a;=0,
i#f

Therefore condition (7) holds for] Zjsv=1 ..,k
Let j be now such thatj = j¢, §€{1, 2, k} then

2 a= 2 utk-l- X - Zb- X b
i#]g D5y, vl k=1 1], r=&+1, ...,k i=],
r=1,..., k

and since

b; = > ij + bi, + 2> b,--i—bjs
i#js_l v=1,...,&6-2 r=E+41,..., k i#jv
v=1, ...,k
thus
(26) I-2uwu= 2 (b-u)+(k-2) (2 bi— 1) +bje
i je ij, i
v=1, ...,k
If k = I then in accordance with (26) and (13) we have
=2 a = 2 (bi—u)+(Zbi=1)+b, = 1= Z w=b,
[ B2 i#jy i i#jy
Since b;=a;=u;fori =1, ..., nand Zb =1 thus for k=2 we have | — >u;=

l#je

=b;,. Therefore condition (7) holds fOl‘j =Je; &= 1,..., kalso.
Now we prove that for p, condition (8) holds. Assume that

(27) bj=1-2a;, @i =0, ij#]

i

and prove that in this case g, = 0.
Firstly consider the case j = j,; » = 1, ..., k. If k = 0 then from (25)
and (27) we have b; = 1 - > a; = | = 3 u,. If &, = 0 then it is follows from

i) [#]
(15) that B; = 0. Assume now that &;, = l. Since «; = O thus it follows
from (16) and (24) that a;, = u;, = I—Zb. and there must be an i such

I#i

that i =i, and B, = 0. But in this case b; = l 5’11 = 2 b;— 2 u;. This
=i l#] i

implies that b, = a, = u, for i # i, and since p;éﬂ thus there is no i such

thati = i,,5, =0 and o;, = 1. But this contradicts our assumption.

Therefore §;, = 0 and §; = 0.

Ifk=1,0b, >1—2é then from (25) we have

(28) 3z (b,.—u,.)+(k—1)(zb,.—1)=o.
i '
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If k=1 then b, = u; = a, for i=], j,. Therefore o; = 3, = 1, i#], j,, and
then i1 = jy, %, = 0. In this case from (27) we have a;, = 1— > b,. Since
aj, = 1= 2 b;>u; thus in accordance with (16) i1
i#jy
uj, =0<:>3Vi:i;éjl and B, =0,

and if 5, = 0, /3, = land i=j, j, then ,3 = 0. Fork>1 equation (28) is true
only if Zb = 1. Then a; = b; and o; = 8, = 1 for all i, i.e. there is no i,

such that oz,l = 0. Thus we have proved that condition (8) holds for j ¢ j,;
r=1, , k.

Let now1 = Jg E€{1, 2, ..., k}, then for k = 1 it follows from (26) and
(27) that b, = 1 — Z u,, and this case is analogous to the case j=j,.; v = 1, . ..

yk; k=0 Wthh we have already investigated above.

If k=2,b;, = 1- 2 a; then from (26) we have
(#JE

i#]y i
=1, ...,k

It k = 2 then b, = u; = a, for i =j,, j,. This case is analogous with the case
j#j.; v=1, ..., k; k =1 which have also been investigated above. And
at last for k > 2, equation (29) is true only if >'b,=1 and this case is analogous

1
with the case j=j,; v =1, ..., k; k=1. Thus we have proved that for p,
condition (8) also holds and therefore a pi-vector defined as in (3) and (13)—
(16) is correctly specified.

After all we notice that for any correctly specified pi-vector p’, such that
p’# p the conditions of Theorem 3 do not hold as there is a vector p(€7Dm)
such that either pep’ and p€p (and therefore p€r) or pep<rF and pep’.
This completes the proof of Theorem 3. [x]

6. Correction operation. Any i-vector (1) such that 7N7PD">0 may be
treated as an incorrectly specified pi-vector. So the procedure for construc-
ting the pi-vector p = rN¢P" may be called a correction operation (in notation
p = Cor 7). In accordance with Theorems 2,3 this procedure consists of the
following steps:

1. Examine if for 7, conditions (a") and (b”) hold (i.e. if F N = 0).

2. If FAPn=0 then construct the i-vector 7/, in accordance with (11)
and (12).

3. Find b;and g, forallj = 1, ..., nin accordance with (13) and (15).

4. Find a; and «; for all j = 1, ..., nin accordance with (14) and (I6),
This completes the construction of p = Cor 7.

Example. Let F be an i-vector defined as

F=([-12;51],(02; ,2), (-0,3; 0,2], [0,1; 1), (0,4; 0,5])
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and it is necessary to find p = Cor r. For 7, conditions (a") and (b”) hold as
2 ¢; = 0,7 and > d. = 8. In accordance with (11) and (12) we find

7~ = ([0; 1], (0,2; 1], [0; 0,2], [0,1; 1), (0,4; 0,5]).
Now from (13)—(16) we have
p = ([0;0,3), (0,2; 0,5), [0; 0,2], [0,1; 0,4), (0,4; 0,5]).
Let R be an i-matrix defined as

F
,‘-'(2)

Fim
where 7@ e®n, i = 1, ..., m. Then for R a correction operation is defined as

Cor FV
Cor F®

Cor 7\m

At last if ﬁgen = (X, A Y, FO, R;) is a partial generalized i-automaton
then for Agen a correction operation is defined as

Apr = Cor .den = <Xy Av y) ﬁ(O)’ R)’

where p©@ = Cor 7, P = Cor R. This correction operation is important
for many areas of the partial pi-atitomata theory, in particular for the mini-
mization of such automata [2].
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