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In [1] Proizvolov proved the following statement. If a real valued
bounded continuous function defined in the Euclidean 2-space has the same
constant integral on every unit square, then the function itself is constant.
Later Maljugin [2] succeeded in proving the same, without the restric-
tion of boundedness.

The following problem seems to be interesting. What kind of figures
can replace the square in the statement mentioned above? Already in [1]
we can find a simple example which shows that the statement is not true
for disks of unit radius. This is not so surprising because the disks are in-
variant under rotation while the squares are not.

Our main result is the following. If a real valued continuous function
defined in the Euclidean 2-space has the same constant integral on every
semidisk of unit radius, then the function itself is constant.

Throughout the paper N, R", 7" denote the set of integers, the n-di-
mensional Euclidean space and the Lebesgue-measure on R” respectively.

In the paper an important role is played by the following functional
equation

) F(x+u)+ F(x—u) = F(x+v)+ F(x—v)
where F:R"—R is the unknown function and x, u, véR"?, |u| = |[v| = I

First we prove two lemmas concerning equation (1), which will be used in
the proof of our main theorem.

LEMMA 1. Suppose that the continuous function F : R? +R satisfies the
equation (1). Then there exist continuous functions f;: R-R (i = 1, 2,...,n)
so that

() F) = /() x = (6% .., X)€R™,
i=1

PROOF. For n = 1 the statement is obvious. Now suppose that the sta-
tement is true for n and the continuous function F : R"+1 R satisfies the
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equation (1). Then the function F* : R —~R defined by
F*(x) = F (x,0) x€R®

has also the property (1), and by our assumption, it has the form
(3 F*x) = 3 filx) x = (X3, Xy ..., X,)€ER".
i=1

For any 0 > x¢R™ let the functions A,.:R-R and ®A/:R-R (k€N,
k=|x|/2,j = 1,2, ..., k) be defined as follows:

ALt) = F(x, 1)~ F(0,1)
4) teR

WAt = F [% X, t] _F [J—Zl X, t] .

k
Obviously 4, = > ® 4j for all k. Furthermore we show, using the notation

j=1 )
« = arcsin |x|/2k, that the functions ®A4] are periodic with the period
2pk =2cosa(j = 1,2, ..., k). Substituting the vectors

2j—1 1 1
xyt+ k]' —X, k ’ —X, = X
[ 2k Px| [2k P o P

into (1) for x, u, v respectively we have

WAt +2pk) = F[%x,t+2p§ —F[l;—lx,t+2p§] =

= F[—j—x, t]—F[";l X, t] = ® AL (f).

.

Thus A4, is periodic with the period 2p% for all k, hence g% = 2(pk*1— pk)
is also a period. Since lim g¥=0, the function 4, is constant on a dense subset
K-+
of R and by the continuity it is constant on the whole R:
4(t) = 4,0) = F¥(x)—F(0, 0).

Substituting this into (4) we get the desired result:
Fx, ) = F*x)+ F(0, )-F(0,0) = 3 fi(x;)+fns1(l)
i=1

where fas1:R=R,  f..4(t) = F (0, )= F(0, 0).

LEMMA 2. Let H,cR*(n=2) be a Lebesgue-measurable set with finit
positive measure and suppose that

) (X3, X ..., X,)EH, implies (—xy, Xy, ..., X,;)EH,
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Furthermore let F : R"—~R be a continuous solution of the functional equation
(I)such that

(6) [ Feydre =0

T(Hy)
for all motions T : R*—~R". Then F is identically zero.
PROOF. By Lemima 1. there are functions f; : R—R such that

FO) = Sfx) X = (% X -0, X)ERO.
i=1

Without loss of generality we can assume that F(0) =0 and f(0) =0
fori=1,2,...,n.

First we show that f; is identically zero. For any {€R let T,: R*—R"
be the translation

TyXyy Xoy vy Xp) = (41, X5 .., X))

Then by (6)
(M) S [ F@dre = [ Fedire =
i=1 H, Hy
= [ Fedae = S [ F@drw,
T(Hy) =1 7y(Hy)
where

F:R"=R, Fx)=f(x) (=12 ...,n).

Fori = 2,3, ..., n we have

[Fxdire = [ Fxydine).
Hy

T (H1)
Thus (7) implies that
(8) [F@drm = [ Fedre.
H, T (Hy)

Now let M : D (cR)--R denote the Lebesgue-measurable function defined
almost everywhere by the formula

M(s) = A~ H,N{xeR*|x; =s}) s€D.
Then by the Fubini Theorem and (8) we come to

© [166) M) d ) = [ F@)dan() =
e H,y

= f Fy(x)d an(x) = ] fu(s) M(s —t)yd A(s).
T(Hy) —
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By (5) M is an even function, thus (9) implies
(10) [ O +A(-9 MEOAAE) = [ [H+9)+AE-9] MEOdAE).
0 0

On the other hand — as it will be shown later — we have

(11) Silt+8)+A(t—5)-2f(H) = L) +fi(—s) sER

which together with (10) proves the statement:
Sty 27(Hy) = 2-£,(0) [ M(s) d As) = 0.
0

It can be proved in the same way that the other functions f; are also
identically zero (instead of H; one should use in the proof a set H,; which can
be obtained from H, by a suitable rotation).

The equation (11) for |s|<1 is a direct consequence of the functional
equation (1); letting « = arcsin |s| and r = cos «, we have

(12) [LE)+LN+ (=) +(=N] = (D +(=1) = [HO+/(D]+

+AO +(—D]-2A0) = [AC+8)+LN]+ [AE=9)+f(=N]-2/ O

Now suppose that (I11) holds for |s|<méeN. Let m=s<m+1 then using (1)
and our assumption we get

flt+9)+fE=9)-2A01) = [2fit+s—-D+f(D+f(—D-fl+5-2)]+
+[2AE—s+ D+LD) +fo(= D= filt =5 +2)]-2/i(t) = 2[L(D)+ (= D] +
+2[A6E = D+A(=s+ D+ 2AO]- [/ - 2)+ fil =s+2)+ 21,0 ] -2/ =
=2[A6s =D +/i(=s+ D] [L6E=2) +/i(=5+2)]+ 2[ (D) +/(= D]

Thus f,(t+5)+f,(f—s)— 2f,(t) does not depend on ¢ and so, choosing ¢t = 03
for m=s<m+1 we have (11). Finally (12) and the last argument prove
(11) by induction.

- THEOREM 1. Suppose that the continuous function F: R?2—~R has the
same constant integral on the images T(K,) of the semidisk

K, = {(x, »)eR?|x*+y*<1, y=0}
for all motions T : R2-R?, i.e.
[ Feoy)dazy) =c.
T(Ko)
Then F is identically constant.

PROOF. According to the preceeding lemmas it is sufficient to show that
F is a solution of the functional equation (1).
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For any «€R, f¢R let T2 : R2~R? be the translation
THx,y) = (x+t-cose, y+tsina) (x,¥)ER2.

Let the semidisk K, be defined by turning K, around the origin by the angle
«. Then the function /, : R—~R defined by

L= [ Fxydrey =c teR
TH(K,)
is differentiable at t = 0, and

at+
(13) I(0) = f F(cosg,sing)cos(p—x)dp = 0.

x

It is easy to see that the function p : R—R defined by
p(g) = F(cosg, sing) @€R
is periodic with the period 2=, continuous and for any «€R

at+

(19) [ po+a)-cospde = [ plp)-cosp—a)dp =0.
v} «
Denote by S, the n-th partial sum of the Fourier-series of p, i.e.

S,.(p) = —02—°+ j (aycoskp+b,sinke)
k=1
which converges to p in L, norm:
IS, —pl* = f (Snl@)—P(9)*d p~0.
0
Then the Cauchy-Schwarz inequality yields

=

fS,,(cp+a)-COS¢pd<p
)

f[sn(¢+«)—p(¢+a)]-60$¢d¢
0

= /f [Sn(tp+°c)—P(qv+°c)]2d¢-]/f0082¢d¢5
0 0

2n —_—
T T
= |/ [ 1o+ 0=sta+ o V2= tsari 1/?0,
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Now, integrating term by term, we have

[Sn(‘P'Fa)COSq)d(p =a—f21c05a+blTnsinoc+
0

)

k=1

cos 2 — — Ko Giore]  «¢R,
4K?

i.e. by n— < we obtain
(15 2T BT Sinat S [ﬂf’icoszka—-ﬂ sin2ka]=0.
2 =4k -1 42— 1

cos«-l——lz—- sin o+
Next we show that the trigonometric series (15) are uniformly convergent.
Indeed

4kb,)

(16) > [ o

cos 2k «
1

k=1

kay, = 4k|byy 4k|ay,| ]
+ sm 2k o
l “ Z[4/(2——1 42 —1

and according to the Bessel- mequallty we have

2z
a3 ety =+ 3 @ +b2)<if P(p)dy < =

and on the other hand

= ( 4k P S (4k)Y .o |
18 2 2 =8 — oo .
(18) 21[41#—1] = El[zlﬂ] 27 "

k=

(17), (18) and the Cauchy-Schwarz inequality yields

2[4/{2_1'“'*2?:’{—1“’2'«'] =) Z[4k2_1]2 > 03+ a3) <o

- k=1

which together with (16) proves the uniform convergence of the series (15)°
Hence (15) is the Fourier-series of the identically zero function, and so

=0, b=0, a,=0, b,=0 (keN).
Now let us notice that for any pcR and k€N
cos(2k+ 1) (p+a)+cos(Zk+1)p = 0,
sin(2k+1) (p+m)+sin(2k+1) ¢ = 0.
Thus for any p€R and neN it follows

n—1

2
Su(@) +Sa(@p+m) = ao+ D yesa[COSCk+ 1) p+cos(2k+1) (p+ )] +
k=1

n—1

2
+ S by alSIn(2k + 1) @ +sin(2k + 1) (9 +7)] = gy .
k=1
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Denoting by 7,: R—R the translation 7.(¢) = ¢+, we can see that S, +
+S, o1, = a, converges to p+ p o 1, in the L, norm. Thus

(19) ple)+plg+a) = 4

holds for a.e. ¢€R, and because of the continuity of (19) holds everywhere.

Of course the procedure described above can be carried out for any
unit disk of R? and leads to a result analogous to (19). Namely this means for
the function F that for any (x, y)¢R? and —z=a=x we have

F(x+cos a, y+sin a)+ F(x—cos a, Y —Sin &) = ay(x, ¥)

where the function g, : R2—~R does not depend on «. This last equality is
exactly the functional equation (1) in the two dimensional case.
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