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Abstract. A method for obtaining a spline function approximating the
solution of a non-linear second order differential equation is presented. The
existence, uniqueness and convergence of the approximate solution are in-
vestigated.

1. Introduction and description of the method

The necessity of accurate numerical approximations to the solution
of non-linear ordinary differential equations governing physical systems
has always been an important problem for scientists and engineers. The
problem has been discussed and treated by many of mathematicians, with
several methods, different degree of accuracy and different rates of conver-
gence. The most effective methods, those are, the approximations by spline
functions.

By spline functions, the Cauchy problem y” = f(x, y) was discussed by
F. R. Loscalzo and T. D. Talbot [3], [4]. The problem y” = f(x, y,y’) was
solved by K. D. Sharma and R. G. Gupta [7] by a one-step method based
upon the Lobatto four-point quadrature formula in which the function f
is necessary to be sufficiently differentiable. The same problem was solved
by Gh. Micula [5], [6] using the spline function, but only when the first
derivative is absent i.e. y” = f(x, ) and for feC? at least. What is the
situation if f€ C°® and C*? This question has not been treated till now by spline
functions and that i$ our main task in this'paper and the following.

In this paper ‘we shall consider the Cauchy problem in the non-linear
ordinary differential equation

(1.1) Y7 () = 11x, (), " (0] @) = yo, ¥ (@) = ¥5

where f€C°([a, b], R?). ,
Our main purpose will be to study applications of spline functions to
the numerical solution (1.1). We develop methods which produc¢e smooth
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approximations to the solution y in the form of piecewise polynomial func-
tion of degree = m which are joined at points called knots which are at least
k continuous derivatives, k = m—3. If S is the spline function it satisfies

(1.2) SeCk[a,b], where k=m—3,
(1.3) Se¢m, in each subinterval [x;, x;.1], i =0,1,...,(n—1).

Here m,, denotes the set of all polynomials of degree =m.
We define the knots by

(1.4) a=Xy<Xy<...<X,=0b

and in our case we shall deal with equal subintervals and in this paper we
denote

(1.5) h:x, =%, i=0,1,...,(n=1).

Also in this paper and in what follows ¢,, ¢;, ¢,, . . . will denote constants
independent of h and consequently independent of n.

We assume that (1.1) represents a single scalar equation, but nearly
all of the numerical and theoretical considerations in this paper carry over
to systems of second order equations where (1.1) could be treated in vector
form. Moreover f should satisfy sufficient conditions to guarantee that there
exists a unique solution to (1.1). For most of the theoretical analysis we ac-
tually need to use the Lipschitz conditions on f.

Our method to approximate the solution of (1.1) will be divided into
two main approximation processes, the first of which is to obtain, numeri-
cally, the approximate values y;, y{, y{" fori =1, 2, ..., n. The second app-
roximation process is the smoothing of these approximate values by a sui-
table spline function, and thus, we get the required smooth approximate so-
lution with sufficiently high degree of accuracy armd high speed of convergen-
ce to the exact solution. Thus we start with the following items, in which
we let the point be a = O without loss of generality.

2. The first approximation process

This chapter contains some assumptions concerning the function f and
a method for obtaining the approximate values y;, y; and y;” where i = 1,
2,...,n and also we shall discuss the convergence of these values to the
exact ones.

2.1 Assumptions and procedure of the method. In this paper we assume
that f(x, y, y’) is a function on R® to R defined and continuous in

D:lx—=xo| <o, |y=yol<B ¥ =yl <v.
We also assume for all (x,y,y"), (x,y1,¥1), (X, ¥s, ;) in D:

(2.1.1) /Gy, ) =M
and the Lipschitz condition
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(2.1.2) |G ¥1 1) =S, Yoo ) = K(1y1= 2| + |¥1 = 12])

where K is the Lipschitz constant.

We assume also that y” (x) = f{x, y(x), ¥’ (x)} has a modulus of con-
tinuity w, (f, h) = w, (h).

Let y(x) be the exact solution of (1.1) with the initial conditions y(0) =
= Yo, ¥ (0) = y;. Then by integrating (1.1) from x; to x where x;=x=x,,,,
i=01,..,(n=1) we get

(2.1.3) Y ) =yi+ [ fity®),y (O}dt =
=yi+ ff{t,y(t),y£+ ff[u,y(U),y’(U)]du}df

and K i

@14 ¥ =y+yiE-x)+ [ [ fuyw),y @) dud

Xi Xi
x t u
=y +yi=x)+ [ [ A y@,yi+ [ fIv,y0),y ()]dv}duat
xl- Xi Xi
and both of y(x) and y’(x) has the following Taylor expansion respectively
where x,=x=x;,,,wherei =0,1,...,(n—1).

1 44
(2.1.5)  y(x) =y +yi (x_xi)+_2‘y E)(x—x) x;<&i<Xyy
and

(2.1.6) Y =yi+y ) (x—x;) X;<m<X;4q

and these expansions may be approximated by using the approximate values
¥i» ¥i and y;” (later will be defined) to get

= =7 1 yidd
(2.1.7) J’?‘(X)=}’i+y1‘(x_x1)+§)’i (x—x;)?
and
(2.1.8) V) =yi+y (x—x)
Setting x = x;,, in (2.1.4) and (2.1.3) respectively we get
Xiyr ¢t
(2.1.9)  y(xip1) = Vipr = yi+yih+ f ff{”’y(”)’y'(u)}d”dt =
Xiy1 ot u
= yi+y; h+ f ff{”ry(u)’y;'i' f f[v,y(v),y’ (V)] dv}dUdt
Xi Xi Xi

6*
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and

(2.1.10) Y (i) = Vi = yit f Jity@),y Ol at =

Xi

Xiy1

=J’?+Xf {'-‘,}’(f),y,f+xftf[u,y(u)YY'(u)]du}dl‘

and if we use the approximated Taylor expansions y¥(x) and y}* (x) instead
of ¥(x) and y’(x) in the integrands (2.1.9) and (2.1.10) and the approximate
values y; and y; instead of ¥, and y; we get

QL) Fr =TTt [ [ F,ye ),y @) du
and -

2.1.12) Vs =T [ FEYEO7 O}l
where |

YR =yt [ SILyRC yE @O)dt

and after computing these approximate values y;,, and y;,; we denote the

approximate value y7’, to be
(2.1.13) Vi = X1 Vier Vier)
where in the above relationsi = 0, 1,..., (n—1).

Before starting our calculations we can quitely use the substitutions

Yo ="Yo Yo =Yo and ¥y’ = f(Xo, Yo, Vo) = [(Xo, Yor ¥g) = ¥&' and so, for x,=
=x=x;, we have the the fellowing equations:

’ 1 144
y(x)=y0+y0(x—x0)+3y (o) (x=x¢)* xo=<Ep=<x;

Y (X) = yo+y” (n,) (x—X,) Xo<Mo=<X;
Y5 (X) = Yo+ Yo (X —Xo) + ¥o' (x—X)?
Y8 (%) = yo+y5 (x—x,)
xy ¢
Vo =voryoht [ [ flu,y§ (), y5* ()] dudt

Xo Xo
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X1
Yi=Yot ff[f%" ®),y5* ()] at
X0

¥ = (1, 1, ¥1)
which will be used in proving a lemma given in the following paragraph.

2.2 Convergence properties at x = x,. In this paragraph we prove a
lemma through which we can see how do the approxinate values converge
to the exact values of y(x), y'(x) and y”’(x) at x = x; and in more details such
that this technique in general case will be clear.

Lemma 2.2 The following inequalities are true

(2.2.1) [yi=y1l=cowo (f, ) h?
(2.2.2) (Y1 =il =cwe(f, h) A
(2.2.3) Y =y =cowo (f,) B®

where, as it has been stated before, ¢,, ¢, and ¢, are constants independent
of h.

Proof. By using the last system of equations stated at the end of the
paragraph 2.1 together with the Lipschitz condition on f we get

lyi—=yil =

ya+Xfo1f[t,y<t>,y' (0] df—%—xoff[t, B OO

= [ 1L y0.y O1 1138 O.58% O] &t

—k [ Oy 01d+K [ Iy O-y5v 0l

dt +

’ 1 ’r = =’ =77/
Yo+ Yo (t_xo)+_2—y (§o) (F—%0)* —¥o— Yo (t —Xo) = ¥5 (t—Xo)?

_«]

SR [ |yt [ ),y @ du=3i— [ flu,ys @), ys (@] du| dt
=KWy (1) 4 K f J = ) s

x, t
K2 [ [ 1y )=y ()| dudf

Xo Xp
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7’ 1 77
Yo+ Yo (u—x5)+ Ey (§o) (E—xo)*—

h3 X3 t
=K;wo<f,h>+1<2f f

= 1 =
_yo(”“xo)“—z—yo (4 —xo)?| dudt

Yo+ (e) (U —Xo) — Yo — ¥y (u—x,)|dudt

+K?2 fxl f'

e e e
=K wo(f, )+ K2 (f, B+ K- wo (£, )

=co W, (f, h) B3
and thus (2.2.1) is proved. Also,

X t
Yotyoh+ [ [ flu,y(w),y (w)]dudt—y,—y,h—

Xo %o

- f ff{u yo (), y5*’ (u)} dudt

Xo Xo

Y=yl =

= [ [ 1t @y @) ~F 8 @, 78 @} dude

Xo Xo

=K [ [ -y @l dudt+K [ [ 1y @-ys¥ @) dudt

Xp Xo Xo Xo

Xy t , 1 5 - By
= Kf f ‘lyo*‘}’o(u“xo)ﬁ‘?yo (&o) (U —Xo)2 = Yo — o (U —Xo) —

Xo X
audt+Kf f

Xo X

- f v, 75 @)y @)1 dv

——yo (u—x,)? yo+ff[v y0),y ()]dv =y -

dudt

h4 X t u
=K—wo(h+K2 [ [ [ y0)=ys o) dvdudt +

Xo Xo X

xl t u
+K2f f f]y'(v)—y;,“’(v)]dvdudt

Xo Xo X
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ht \ x, t u
=K§wo(f,h)+1< fff

Xy Xo %o

, |
Yo +yo("_x0)+?y (o) (v —%0)* —

X t u
dvduart+K2f f f

Xo Xo %o

Yoty (o) (v —Xo) — Yo — Vo (v —X,)| dvdudt

- = 1 _,
—Yo— o (V—xo)—‘é"yo (v —2x,)?

h* h5 h*
=K oW (1) K=o wa (1) + K2 w () S ey wa ()

and so, we have proved (2.2.2), and finally
Iy =y = [/x0 yo y1l =fTxu yu 1l
=Ky, =l +Kly1 -yl
=Ke, w, (f, h) h*+ Kcow, (f, h) B®
=c,wo (fLh) 13
which is (2.2.3) and thus the proof of the lemma is complete.

2.3 General convergence process. In this last paragraph of the second
chapter we prove theorems dealing with the convergence of the approximate
values ¥;.,, i+, and y;%, to the exact values y(x;.,), ¥'(x;1,) and y"’(x;,,)
where 1 in general may take the values 1, 2,.. ., (n—1). Before proving these
theorems we are in need to prove some lemmas.

Lemma 2.3.1 The inequality

Yl =vial=ly" A+ )+ Kh(1+ch) [y =yil +eswo (f, h) B
is true and holds for alli = 1, 2,..., (n— 1) where K is the Lipschitz constant
and ¢, ¢,, ¢; are some other constants.

Proof. By the same way as in lemma 2.2 and by combination of equa-
tions (2.1.3), (2.1.5), (2.1.6), (2.1.7), (2.1.8), (2.1.10) and (2.1.12) together
with the Lipschitz condition on f it will be easy to deduce this inequality.

Definition 2.3.1 We shall denote the estimating errors of y; and of
y; at any point x;€[0,b],i =0,1,...,n, to be as the following

e, = |yi—yil and € = [yi=Yyil
Lemma 2.3.2 The inequality

€1 =Cglr, T CWo () 12
is true for all

i=0,1,...,(n—1), where e, =max{ey,e,...,e}

Proof. By using the definition 2.3.1 and lemma 2.3.1 the principle of
successive substitution implies
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eiy=e;(1+cyh) +Kh(1+c,h)e; +c, W, (h) h3
ei(l+cghy=ej_y (14+cshy* +Kh(1+c, h)e;— (14+c3h) +c;wo (h) h® (1+¢5 h)
€y (14, R =y (143 M)+ Kh(14Cy ) ey (145 h)E + 5 Wy () 13 (14+¢5 h)?

= + +
= + +
= + +

el (1+cyh)ise,(1+cy h)+1 - Kh(1+chy e, (1 +cyh)E +c5w (h) B3 (1+cy )
and easily we obtain
i
ey =eo(1+csh) "1+ Kh(l+c¢,h) D e;(1+ ¢ h)—i +
j=0

+eswo () B D) (1 4¢3 Ry
j=0

Let e, = max{ey e, ...,¢}, 0=ry=i, and substitute e; by zero to
obtain

€1 =Kh(1 +cih)er, D) (143 b)Y +cswo (h) b 5 (1 4¢3 h)!
A “

j=0 J
= K ey e WZGNT2D Ly gy (AFGDTZ0
4 0 C3 h 570 C3h
and
i+1 n
(1 +c,h)yitt = [1 +c3—b—] é[l +c3-b—] =eb¢s = constant
n n

implies

;11 =Cgery+Cawo(h) h?
which completes the proof.
Lemma 2.3.3 The inequality
e =6,(1+cgh?)+cyhej+cygwo(h) ht
istrue foralli =0, 1,..., (n—1).

Proof. By the same way as in lemma 2.3.1 and by using the equations
(2.1.9), (2.1.11), (2.1.5), (2.1.6), (2.1.7), (2.1.8) and the Lipschitz condition
(2.1.2) we can get the required result.

Lemma 2.3.4 The inequality
€1 =er (1 +¢y h)+ o wy(h) B2

is true for all i =0,1,...,(n—1), where e,, = max {e,, e;, ...,¢;} and 0=

=ry=I.
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Proof. From the lemma 2.3.2 we get
e} =cg e+ ¢, w, (h) h?
where e} = max {e,, e, ...,e_,) and by recalling er, = max{ey, e, ..., e}
then obviously e, =e,, from which we get
€ =Cg €ry+ €, W, (M) A2
Using this result in the lemma 2.3.3 we get

6,1 =er, (1 +¢4 h?) +cy h{cg ery+c; wo () B2} + ¢, Wy (B) I
i.e.
eir1=er (1 +cyy N)+ ¢y wo (B) H*

and thus the proof is complete.
Lemma 2.3.5 The inequality
er,=cg (I ey h)er +egswo(h) b2

is true where r, is the subscript of the maximum error e,, where ¢,; = max
{ess €y - .. ¢} and e, = max{e,, e, ..., €e,—1} with some r;, 0=r,=r,—1.

Proof. By using the lemma 2.3.1 but the interval [x;, x;.,] is replaced by
the interval [x,,—1, Xr,] and by similar procedures as shown in lemma 2.3.2
with the using of the definition 2.3.1 it would be easy to obtain the required
result.

Lemma 2.3.6 The inquality
ero=er (1 +¢;6h)+cawy (h) H®

is true where e,, = max{e,, e,, . . ., ¢;} with some r,, 0=r,=i, and ¢, = max
{0, €1y - - ) €ry—1} With some ry, 0=r;=r,— 1.

Proof. From lemma 2.3.3 with replacing the interval [x;, x;.;] by the
interval [X;,—1, X, ] we obviously get

ero=ero—1 (1 +¢ g h?) +cy her 1 + oo Wy (R) R
and e, = max{e,, &, ..., er,—1} implics
Cro—1 = 6r,
from which we get
ero=er, (14 ¢4 h?) + ¢, g her,— 1 + Cyo W, (1) 1
From lemma 2.3.5 we get
er—1=Cy3 (1 +cygh)ers+ci5wo(h) 12

where e, « = max{e,, €, . . ., é,—2} for some r¥, 0=r¥=r,—2, and it is easy
to use the fact that
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erp» = max{e,, - ..,er,—2y =mMax{ey, €y, . . -,€ry—2,Cro—1} = €r,
from which we get
€ro—1=Cy3 (1414 h) €r, +cy5 W, (B) B2
Returning to e,, and using the last inequality we get
ero=er, (1 4 15 B?) + 19 ey (1 + €14 h) er, + €5 Wy (R) B2} +co W, (R) B2
=er, (1 +c¢16 1)+ ¢y wo () B3

which completes the proof.

Theorem 2.3.1 The speed of convergence of the approximate value y; ;.
given by the formula (2.1.11), to the exact value of the solution of (1.1) at
X;4+, is estimated by the inequality

€iv1 = |Yie1—Yie1| = wo (h) 2

which holds foralli =0, 1, ..., (n—1).
Proof. From lemma 2.3.4 we have

eiy1=er, (1 +¢y3 h)+ oW () B3

where e,, = max {ey, €,, . . ., ¢;} withsome ry,0=ry=i,andi = 0,1, ...,(n-1)
And from lemma 2.3.6 we know that

ero=er, (1 +¢6 )+ 37 Wo (R) H°

where e, = max {e,, ey, ..., er,—1} with some r, O0=r,=r,—1.
Continuing by the same way as it was shown in lemma 2.3.4 and lemma
2.3.6 we can obtain the following inequalities

erléerz(l +Cik h)“}'C;k* Wo (h) h3
where ¢, = max{e,, e, ..., é,—1} with some r,, 0=r,=r,—1, and
erp=er, (1 +c¥ h)+c¥*wy(h) h®

where e,, = max{eye,, ...,e,—1} with some r;, O0=ry=r,—1, and at the
end we can get the inequality

er,=er s, (14X h)+cx*wy (h) 1

where e,; = max {e,, e;} with some r,, 0=r;=1, and e, , = max{e} = ¢
for some rr, ,, 0=rs;,=0, i.e. oy, = 0.

Now, taking ¢, = max{c,, ¢y, cf, ¥, ..., cf} and c¢yo = max{c,,, ¢4,
cof* ckx .., c¥*) and by the rearrangement of the above inequalities we
].t 2 S
ge
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e =er (1 +¢55h) + Cog W (R) P
erg (1 + g0 N)=er, (1 +¢yp h)? + Coa Wo (R) 12 (1 4 cpq h)
er, (1 ¢ )2 =er, (1 +Cyp )3 + Coa Wy () 13 (1 +cop h)?

= +
= +
= +

erg(1+cop M)t =ty 1 (14 Cop M) T2+ Coa Wy (R) B3 (1 + ¢pp h)ST?
from which we get
s+1
eri=erg, (1 +Cpu B+ 2+ o wo (M) B® 3 (14 h)
j=0
and using the fact that e, = ¢, =0 this will be
s+1 .
=coaWo(R) 1® 3 (1 +¢y5 h)
j=0

= ey () o S H 2V =1}
Coo h
=0y Wo (R) 2
and this completes the proof.

Theorem 2.3.2 The speed of convergence of the approximate value
¥i+1, given by the formula (2.1.12), to y;,, is estimated by the inequality

€1 = Vi1 —Vig1l Scaawo(h) 2
where i =0,1,...,(n—1).
Proof. The lemma 2.3.2 tells us that
€41 =Cg lry+Cy Wo (h) 2
where e,, = max {e,, e, . ..,e;} and from theorem 2.3.1 we can obtain that
€ry = Cyy Wo (h) h?
and thus we obviously get
€f 1= Cg Coy Wo () H2 + ¢ wy () 2
=pq Wo (R) B?
which completes the proof.

Theorem 2.3.3 The error of the approximate value y;’, is estimated
by the inequality
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Cr1 = Vit —Yita| = o5 wo (R) 12
where i =0,1,...,(n=1).
Proof. Using equations (1.1) and (2.1.13) we get
|yl =il = [fKin Yirr Yie) =f(Xis 1, YViv1s Yied)|
applying the Lipschitz condition on f this will be
=K(Yie1—Yical + [¥is1—Yiaal)
using theorems 2.3.1 and 2.3.2 this reduces to
= K(Cyy Wo (h) h2 + ¢54 wo () h?)
= (o5 Wy (N) 12
which completes the proof.
3. The second approximation process

In the last chapter we have obtained a set of points Y :30,7,, ..., ¥,
which are the approximate values of the exact solution y(x) of (1.1) at the

points xo, X;, . . ., X,, respectively. Also we obtained two sets of approximate
values Y’ :yg,y1,...,yn and Y :y¢",y1, ...,y of the values y’(x,) respec-
tively where i =0,1,2,...,n.

Here in this chapter and on the bases of those sets of approximate values
Y, Y’ and Y” we are going to construct a spline function S,(x) which will be
interpolated to the set ¥ on the mesh A and approximates the exact solu-
tion y(x) of (1.1) and also we shall discuss the convergence of this function
to y(x).

3.1 Construction of the spline function. In this paragraph we shall intro-

duce the spline function approximating the solution of our differential equ-
ation and so we prove the following theorem.

Theorem 3.1 For a given mesh of points
A:0 =Xg<Xy<...<Xy<Xyuiy<...<X,=0b, Xpi1—X,=h
and given sets of points
7:.}_/0’?1’ ""yk’yk-H’ ""j}n

and

‘-/,—/ -’ e Ayl —
Y90, Y1 - 3 Vio Vs - -2 Vn
and

Y7 3 0 Vs Ve - VY
there is a unique spline function S,(x) interpolated on the mesh 4 to the set
Y and satisfies the following conditions
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3.1.1) S4(Y,x) = S4(x)€C2[0, b]

(3.1.2) S,(x)=y, (k=0,1,...,n)

(3.1.3) Si(x)=v. (k=0,1,...,n)

(3.1.4) S{ () =y (k=0,1,...,n)
For x,=x=x,,, and k=0,1,...,(n—-1)

— — | =
Si1(x) = 8 (%) = Y~V (X—xk)'*'g)/k (x —x, 2+ af (x —x;)° +

(3.1.5) +ak (x —x, )t +ak (x —x,)°
Proof. From the continuity condition (3.1.1) and for x = x,,, we get

B.1.6) Sy (xpx1) = Spvr (1) = Yir1, k=0,1,2,...,(n=1).
B.L7) Sk(xer1) = Ske1 (X41) = Vi1, k=0,1,2,...,(n=1).
(3.1.8) Sk (X441) = Si1 (Xps1) =Vi41, k=0,1,2,...,(n—-1).

the above three equations are implied also by using the conditions (3.1.1),
(3.1.2), (3.1.3) and (3.1.4). Using the equation (3.1.5) the equations (3.1.6),
(3.1.7), and (3.1.8) imply the following

(3.1.9) ak+akh+akh® =F,,
_— 1 by - —~ 1 =7 L2
F, = F{ylﬁ-l_yk_ykh _Eyk r?l,
and
(3.1.10) 3ak+4akh+5akh® = F/,
’ l -7 w4 44

F = ;{(,VRH—}’/(_)’R hy,
and
(3.1.11) 6a%+ 12ak h +20ak h®> = F/’,

=’

44 1 44
F =—h_()’u+1—}’k )

where h =x,,,—x,>0and k=0,1,2,...,(n—1).

These last three equations in the three unknowns a¥, a& and a% have a
unique solution since its determinant is different from zero for h=0 and the
solutions are

(3.1.12) ak = %(20& —8F,+F’)
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(3.1.13) ok = —%E(—SOF,‘-I-MF,"—ZF,{’)

(3.1.14) gk = #(121«1‘-61:,9r Fy.

The uniqueness of this solution guarantees the uniqueness of the spline
function S,(x) and consequently the existance of such a function and thus
the theorem is proved.

3.2 Convergence of the spline function to the solution. In this paragraph
we prove the essential theorem concerned with the convergence of our spline
function constructed in theorem 3.1 to the exact solution of the differential
equation in consideration.

Theorem 3.2.1 If y(x) is the solution of (1.1) and S,(x) is the spline func-
tion represented in theorem 3.1, then there exists a constant E independent
of h such that

1Y@ ()= S@ ()| =Ew, (f,h) k=9 (g =0,1,2.)
for all x€ [0, b].
For the proof of this theorem we are in need to the following lemma.
Lemma 3.2.1 The following inequalities are true
k Af :
lajl=47we(hh) (1 =1,2,3)
where A; (j = 1, 2, 3) are constants independent of A.

Proof of the lemma. For the proof of this lemma we deduce at first
some inequalities concerning the absolute values of F,, F; and F;’. They are
calculated as follows.

From (3.1.9) we have

| Fil

- ot bt d 1 -7
Vis1—Yu—Yih _Eyk h?

T w
and from Taylor expansion of y(x) and for x = x,,, this will be
1

3

— — — 1 —r ’ 1 ’
Ye+r1— Ve — Yk h—?ykh2_yk+1+yk+ykh+—2—y ¢Eph®

|
l — — ’ — l ’7 =
= F{ka-!»l_yk—#ll + Ve =Yl +h |y — vl +‘2—h2 |y (5x) — Vi l}
and by using theorems 2.3.1, 2.3.2 and 2.3.3 this will be
B
=—w,(f,h
Pl (f,h)

where B is a constant independent of h.
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The same will be done for F/, and from (3.1.10) we have
’ 1 4 yld 7
|Fe| = " |Vir1— Y=Y hl
and using the Taylor expansion of y” (x) and for x = x,., ,, this equals

1 -7 a4 ’ ’ 44
h2 — Vi1 = Vk= VK B =Yis1 + Vi +y" () |

= F{IJ’;H—}—/ILHI + Y=yl +h 1y () =i 1}
Using theorems 2.3.2, 2.3.3 and the modulus of continuity of f, this becomes:

B (i)

where B’ is some constant independent of .
For |F/’| we have from (3.1.11)

F’/ - 7’7
|F| = n IJ’u+1 Vx|
=— P VK1 = Ve — V=) +wo (S, B
1 7 bt dd 7’ -7
§7(|yk+1—yk+ll + 1y =y | +wo (f, h))
B,/

Wo(f: h)

where B” is a constant independent of A.
Taking the last three inequalities concerning |F,|, |Fy| and |F/’| into

consideration, and using equations (3.1.12), (3.1.13) and (3.1.14) the proof
of this lemma will be complete.

Proof of theorem 3.2.1 We start the proof with the case ¢ = 0. For this:
case and for x, =x=x,,, we have by (2.1.5) and (3.1.5) the following

1 7 — —
ly(x)—Sa(x)| = J’k+}’1:(x—xk)+“2—y (&) (=X =T — Vi (x —x,) —
=T (=) - (x = — g (x5 e (e

— ’ = 1 ’” =1
= Y=Yl +h |yi—yil +7h2 1y ) —yi' | +h® |ak| +

+h* |af| +h® |df] .



‘96 T. FAWZY

Applying theorems 2.3.1, 2.3.2, 2.3.3 and the lemma 3.2.1 this will be
=y Wo (f, h) R2 4oy o ([, h)h‘ﬂ—%wo(f, h) h%’—%czs W, (h) h* +
+ Ay wo (f, h) B2+ Ay wo (f, h) h*+ Agwo (f, h) h?
- [c21+c24h+%+%czsh2+A1+A2+A3] wo (f, h) B

=E,w,(f, h) h*,

where E, is a constant independent of h.
Secondly, the case when ¢ = 1. By the same technique as the above but
using (2.1.6) and the derivative of (3.1.5) instead of (2.1.5) and (3.1.5) we get,

1y ()= Sa()| = yi+y” () (X —x,) =y =i (x—x,) —
—3ak (x —x,)? — 4a (x — x,)° — 5ak (x — x,)*|

=Yyl +h1y” () —yi'| +3 |af| h* +4 |af| B*+5 |ag] h*.
Applying theorem 2.3.2, 2.3.3 and lemma 3.2.1 this becomes

=Coy Wo (f, ) B2+ Wy (f, ) h+3A, wo (f, h) h+ o5 wo (h) B3+

+4A,wo(f,h)h+5A;wo(f, h) h

= (o h+1+3A,+ o5 B2+4A,+5A5)wo (f, h) h

=E,w,(f,h)h

where E, is a constant independent of A.
At last, the case when ¢ = 2. In this case and using the second deriv-
ative of (3.1.5) we get

1y ()= S7 ()| = |y” ()= yi — 6az (x —x,) — 1245 (x —x,)* — 20§ (x — x,)° |
ly” ()—yi'1 +6 |af| h+12 |af| h*+20 |af| B

= |y )=y’ =y +yi1 +6 |af] h+12 |af| h*+20 |ag| h®
=y )=y + 1y =y +6 lag| h+

+12 |a¥| h2+20 |a¥] h® .

I!A

Using theorem 2.3.2 and lemma 3.2.1 this becomes
=Wo (f, 1) +cos Wo (f, ) B2 +6 A, wo (f, h) + 12A, wo (f, B) +20 A3 w, (f, h)
= (14¢sh2+6A,+12A,+20A3) wo (f, )= E, wo (f, h)

where E, is some constant independent of .



SPLINE FUNCTIONS AND THE CAUCHY PROBLEMS, I. 97

Now, by taking E = max (E,, E;, E,), the proof of the theorem is com-
plete.

In the following theorem we shall prove that our approximate solution
S, (x) satisfies the differential equation (1.1) as n—o or as h—0.

Theorem 3.2.2 I S/ (x) denotes the function

S5 (x) = fTx, S4(x), S4(x)]
and S, (x) is the spline function given in theorem 3.1, then for any x¢ [0, b]
87 (x) =87 ()| =Mw (, h)

where M is some constant independent of h. Otherwise

7(x)=S87(x) as n-o oras h-0.

Proof. We have

87 (x)— S5 (¥)] =

=

S5 ()=y" () +y" (x) = 8% (x)|
84 () =y () + [y ()~ 84 ()|
using the definition of S (x) this will be
= |/Tx, Sa(x), S50) —f1x, y(), y" ()| + [y" (x) = 87 (x)
applying the Lipschitz condition on f this will be
=K(|S2(x)—y()| +[S5(x) =y () [) + [y” ()= 8" (%)
and by using theorem 3.2.1 this reduces to
=KEw, (f, h) i+ KEw, (f, h) h+ Ew, (f, h)
= (KEh>+ KEh+ E)w, (f, h)
=Mw,(f, h)

where M is some constant independent of h and thus the proof is complete.
N.B.I have solved the same problem but for the general case when
feCr, where r is finite positive integer and this will appear in the next paper
under the same title.
The problem of the non linear ordinary differential equation of the n-th
order has been solved by the same method and also when fe C™ and this will
appear in the future.
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